ケイリー・ハミルトンの定理 (Japanese Wikipedia)

Analysis of information sources in references of the Wikipedia article "ケイリー・ハミルトンの定理" in Japanese language version.

refsWebsite
Global rank Japanese rank
low place
low place
934th place
57th place
low place
low place

google.co.jp

books.google.co.jp

wikipedia.org

en.wikipedia.org

  • 四元数の乗法およびそれを用いた任意の構成(この文脈では特に行列式が顕著)には非可換性がかかわってくるから、十分に定義を検討する必要がある。分解型四元数に対するケイリー・ハミルトンの定理も(やや素性はよくない英語版が)同様に成立する[11]。四元数の場合も分解型四元数の場合も、ある種の複素2次行列として表すことができる(ノルム 1 に制限すれば、これらの乗法の定める作用はそれぞれ特殊ユニタリ群 SU(2) および SU(1, 1) である)から、これらに対して定理が成り立つことは驚くことではない。そのような行列表現のできない八元数(八元数の乗法は非結合的であるから行列の積で表現することは不合理)でさえ、それでも修正版のケイリー・ハミルトンの定理が満足される[12]
  • 例えば(ヤコビの公式を解いている)(Brown 1994, p. 54) などを見よ:
    ただし B後で述べる随伴行列である。これと同値な、再帰的に関係したアルゴリズムをユルバン・ルヴェリエドミトリー・ファデーエフ英語版が導入した。そのファデーエフ–ルヴェリエアルゴリズム英語版からは
    が導かれる(例えば Gantmacher 1960, p. 88 を見よ)。 が再帰の終端となる。あとで述べる代数的証明では、件の随伴行列 BkMn−k の満たす性質に依拠している。具体的には および上記の p の微分を追跡すれば を得[16]、上記の再帰手続きが順に繰り返される。

wstein.org