Tajima M, Urabe I. et al. (1976). “Role of calcium ions in the thermostability of thermolysin and Bacillus subtilis var. amylosacchariticus neutral protease”. Eur. J. Biochem.64 (1): 243-247. doi:10.1111/j.1432-1033.1976.tb10293.x. PMID819262.
Trusek-Holownia A. (2003). “Synthesis of ZAlaPheOMe, the precursor of bitter dipeptide in the two-phase ethyl acetate-water system catalysed by thermolysin”. J. Biotechnol.102 (2): 153-163. doi:10.1016/S0168-1656(03)00024-5. PMID12697393.
Yasukawa K, Kusano M, Inouye K. (2007). “A new method for the extracellular production of recombinant thermolysin by co-expressing the mature sequence and pro-sequence in Escherichia coli”. Protein Eng. Des. Sel.20 (8): 375-383. doi:10.1093/protein/gzm031. PMID17616558.
Holmes MA and Matthews BW. (1982). “Structure of thermolysin refined at 1.6 A resolution”. J. Mol. Biol.160 (4): 623-639. doi:10.1016/0022-2836(82)90319-9. PMID7175940.
Eijsink VG, Veltman OR, et al. (1995). “Structural determinants of the stability of thermolysin-like proteinases”. Nat. Struct. Biol.2 (5): 374-379. doi:10.1038/nsb0595-374. PMID7664094.
Dahlquist FW, Long JW and Bigbee WL (1976). “Role of Calcium in the thermal stability of thermolysin”. Biochemistry15 (5): 1103-1111. doi:10.1021/bi00650a024. PMID814920.
Yagasaki, Makoto; Hashimoto, Shin-ichi (November 2008). “Synthesis and application of dipeptides; current status and perspectives”. Applied Microbiology and Biotechnology81 (1): 13-22. doi:10.1007/s00253-008-1590-3. PMID18795289.
nih.gov
pubmed.ncbi.nlm.nih.gov
Tajima M, Urabe I. et al. (1976). “Role of calcium ions in the thermostability of thermolysin and Bacillus subtilis var. amylosacchariticus neutral protease”. Eur. J. Biochem.64 (1): 243-247. doi:10.1111/j.1432-1033.1976.tb10293.x. PMID819262.
Trusek-Holownia A. (2003). “Synthesis of ZAlaPheOMe, the precursor of bitter dipeptide in the two-phase ethyl acetate-water system catalysed by thermolysin”. J. Biotechnol.102 (2): 153-163. doi:10.1016/S0168-1656(03)00024-5. PMID12697393.
Yasukawa K, Kusano M, Inouye K. (2007). “A new method for the extracellular production of recombinant thermolysin by co-expressing the mature sequence and pro-sequence in Escherichia coli”. Protein Eng. Des. Sel.20 (8): 375-383. doi:10.1093/protein/gzm031. PMID17616558.
Holmes MA and Matthews BW. (1982). “Structure of thermolysin refined at 1.6 A resolution”. J. Mol. Biol.160 (4): 623-639. doi:10.1016/0022-2836(82)90319-9. PMID7175940.
Matthews BW, Weaver LH and Kester WR. (1974). “The conformation of thermolysin”. J. Biol. Chem.249 (24): 8030-8044. PMID4214815.
Eijsink VG, Veltman OR, et al. (1995). “Structural determinants of the stability of thermolysin-like proteinases”. Nat. Struct. Biol.2 (5): 374-379. doi:10.1038/nsb0595-374. PMID7664094.
Dahlquist FW, Long JW and Bigbee WL (1976). “Role of Calcium in the thermal stability of thermolysin”. Biochemistry15 (5): 1103-1111. doi:10.1021/bi00650a024. PMID814920.
Yagasaki, Makoto; Hashimoto, Shin-ichi (November 2008). “Synthesis and application of dipeptides; current status and perspectives”. Applied Microbiology and Biotechnology81 (1): 13-22. doi:10.1007/s00253-008-1590-3. PMID18795289.