“Molecular cloning of the cDNA for human TrkC (NTRK3), chromosomal assignment, and evidence for a splice variant”. Genomics22 (2): 267–72. (July 1994). doi:10.1006/geno.1994.1383. PMID7806211.
“TrkC isoforms with inserts in the kinase domain show impaired signaling responses”. The Journal of Biological Chemistry271 (10): 5691–7. (March 1996). doi:10.1074/jbc.271.10.5691. PMID8621434.
“Emerging roles of the neurotrophin receptor TrkC in synapse organization”. Neuroscience Research116 (2017): 10–17. (March 2017). doi:10.1016/j.neures.2016.09.009. PMID27697534.
“TrkC plays an essential role in breast tumor growth and metastasis”. Carcinogenesis31 (11): 1939–47. (November 2010). doi:10.1093/carcin/bgq180. PMID20802235.
“β-Phenethyl isothiocyanate induces death receptor 5 to induce apoptosis in human oral cancer cells via p38”. Oral Diseases18 (5): 513–9. (July 2012). doi:10.1111/j.1601-0825.2012.01905.x. PMID22309674.
“TrkC expression predicts good clinical outcome in primitive neuroectodermal brain tumors”. Journal of Clinical Oncology18 (5): 1027–35. (March 2000). doi:10.1200/jco.2000.18.5.1027. PMID10694553.
Lamballe, L; Klein, R; Barbecid, M (6 September 1991). “TrkC, a new member of the TrkC family of tyrosine protein kinases, is a receptor for Neurotrophin-3”. Cell66 (5): 967–979. doi:10.1016/0092-8674(91)90442-2. PMID1653651.
Philo, J; Talvenheimo, J; Wen, J; Rosenfeld, R; Welcher, A; Arakawa, T (11 November 1994). “Interactions of Neurotrophin-3 (NT-3), brain-derived neurotrophic factor (BDNF), and the NT-3. BDNF heterodimer with the extracellular domains of the TrkB and TrkC receptors”. Journal of Biological Chemistry269 (45): 27840–27846. doi:10.1016/S0021-9258(18)46863-9. PMID7961713.
“TrkC isoforms with inserts in the kinase domain show impaired signaling responses”. The Journal of Biological Chemistry271 (10): 5691–7. (March 1996). doi:10.1074/jbc.271.10.5691. PMID8621434.
“TrkC binds to the type II TGF-beta receptor to suppress TGF-beta signaling”. Oncogene26 (55): 7684–91. (December 2007). doi:10.1038/sj.onc.1210571. PMID17546043.
“Dok5 is substrate of TrkB and TrkC receptors and involved in neurotrophin induced MAPK activation”. Cellular Signalling18 (11): 1995–2003. (November 2006). doi:10.1016/j.cellsig.2006.03.007. PMID16647839.
“TrkC binds to the bone morphogenetic protein type II receptor to suppress bone morphogenetic protein signaling”. Cancer Research67 (20): 9869–77. (October 2007). doi:10.1158/0008-5472.CAN-07-0436. PMID17942918.
“Neurotrophin-3 and brain-derived neurotrophic factor activate multiple signal transduction events but are not survival factors for hippocampal pyramidal neurons”. Journal of Neurochemistry67 (3): 952–63. (September 1996). doi:10.1046/j.1471-4159.1996.67030952.x. PMID8752100.
“Molecular cloning of the cDNA for human TrkC (NTRK3), chromosomal assignment, and evidence for a splice variant”. Genomics22 (2): 267–72. (July 1994). doi:10.1006/geno.1994.1383. PMID7806211.
“TrkC isoforms with inserts in the kinase domain show impaired signaling responses”. The Journal of Biological Chemistry271 (10): 5691–7. (March 1996). doi:10.1074/jbc.271.10.5691. PMID8621434.
“Emerging roles of the neurotrophin receptor TrkC in synapse organization”. Neuroscience Research116 (2017): 10–17. (March 2017). doi:10.1016/j.neures.2016.09.009. PMID27697534.
“TrkC plays an essential role in breast tumor growth and metastasis”. Carcinogenesis31 (11): 1939–47. (November 2010). doi:10.1093/carcin/bgq180. PMID20802235.
“β-Phenethyl isothiocyanate induces death receptor 5 to induce apoptosis in human oral cancer cells via p38”. Oral Diseases18 (5): 513–9. (July 2012). doi:10.1111/j.1601-0825.2012.01905.x. PMID22309674.
“TrkC expression predicts good clinical outcome in primitive neuroectodermal brain tumors”. Journal of Clinical Oncology18 (5): 1027–35. (March 2000). doi:10.1200/jco.2000.18.5.1027. PMID10694553.
Lamballe, L; Klein, R; Barbecid, M (6 September 1991). “TrkC, a new member of the TrkC family of tyrosine protein kinases, is a receptor for Neurotrophin-3”. Cell66 (5): 967–979. doi:10.1016/0092-8674(91)90442-2. PMID1653651.
Philo, J; Talvenheimo, J; Wen, J; Rosenfeld, R; Welcher, A; Arakawa, T (11 November 1994). “Interactions of Neurotrophin-3 (NT-3), brain-derived neurotrophic factor (BDNF), and the NT-3. BDNF heterodimer with the extracellular domains of the TrkB and TrkC receptors”. Journal of Biological Chemistry269 (45): 27840–27846. doi:10.1016/S0021-9258(18)46863-9. PMID7961713.
“TrkC isoforms with inserts in the kinase domain show impaired signaling responses”. The Journal of Biological Chemistry271 (10): 5691–7. (March 1996). doi:10.1074/jbc.271.10.5691. PMID8621434.
“TrkC binds to the type II TGF-beta receptor to suppress TGF-beta signaling”. Oncogene26 (55): 7684–91. (December 2007). doi:10.1038/sj.onc.1210571. PMID17546043.
“Dok5 is substrate of TrkB and TrkC receptors and involved in neurotrophin induced MAPK activation”. Cellular Signalling18 (11): 1995–2003. (November 2006). doi:10.1016/j.cellsig.2006.03.007. PMID16647839.
“TrkC binds to the bone morphogenetic protein type II receptor to suppress bone morphogenetic protein signaling”. Cancer Research67 (20): 9869–77. (October 2007). doi:10.1158/0008-5472.CAN-07-0436. PMID17942918.
“Neurotrophin-3 and brain-derived neurotrophic factor activate multiple signal transduction events but are not survival factors for hippocampal pyramidal neurons”. Journal of Neurochemistry67 (3): 952–63. (September 1996). doi:10.1046/j.1471-4159.1996.67030952.x. PMID8752100.