“Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes”. Cell81 (5): 811–23. (Jun 1995). doi:10.1016/0092-8674(95)90542-1. PMID7774020.
“Traffic signaling: new functions of huntingtin and axonal transport in neurological disease”. Current Opinion in Neurobiology63: 122–130. (August 2020). doi:10.1016/j.conb.2020.04.001. PMID32408142.
“Normal huntingtin function: an alternative approach to Huntington's disease”. Nature Reviews. Neuroscience6 (12): 919–30. (December 2005). doi:10.1038/nrn1806. PMID16288298.
“Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease”. Science293 (5529): 493–8. (July 2001). doi:10.1126/science.1059581. PMID11408619.
“Perinuclear localization of huntingtin as a consequence of its binding to microtubules through an interaction with beta-tubulin: relevance to Huntington's disease”. Journal of Cell Science115 (Pt 5): 941–8. (March 2002). doi:10.1242/jcs.115.5.941. PMID11870213.
“Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons”. Neuron14 (5): 1075–81. (May 1995). doi:10.1016/0896-6273(95)90346-1. PMID7748555.
“Wild-type and mutant huntingtins function in vesicle trafficking in the secretory and endocytic pathways”. Experimental Neurology152 (1): 34–40. (July 1998). doi:10.1006/exnr.1998.6832. PMID9682010.
“The huntingtin interacting protein HIP1 is a clathrin and alpha-adaptin-binding protein involved in receptor-mediated endocytosis”. Human Molecular Genetics10 (17): 1807–17. (August 2001). doi:10.1093/hmg/10.17.1807. PMID11532990.
“The hunt for huntingtin function: interaction partners tell many different stories”. Trends in Biochemical Sciences28 (8): 425–33. (Aug 2003). doi:10.1016/S0968-0004(03)00168-3. PMID12932731.
“A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease”. Molecular Cell15 (6): 853–65. (Sep 2004). doi:10.1016/j.molcel.2004.09.016. PMID15383276.
“HIP-I: a huntingtin interacting protein isolated by the yeast two-hybrid system”. Human Molecular Genetics6 (3): 487–95. (Mar 1997). doi:10.1093/hmg/6.3.487. PMID9147654.
“SH3 domain-dependent association of huntingtin with epidermal growth factor receptor signaling complexes”. The Journal of Biological Chemistry272 (13): 8121–4. (Mar 1997). doi:10.1074/jbc.272.13.8121. PMID9079622.
“PACSIN 1 interacts with huntingtin and is absent from synaptic varicosities in presymptomatic Huntington's disease brains”. Human Molecular Genetics11 (21): 2547–58. (Oct 2002). doi:10.1093/hmg/11.21.2547. PMID12354780.
“SH3GL3 associates with the Huntingtin exon 1 protein and promotes the formation of polygln-containing protein aggregates”. Molecular Cell2 (4): 427–36. (Oct 1998). doi:10.1016/S1097-2765(00)80142-2. PMID9809064.
“Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme”. The Journal of Biological Chemistry271 (32): 19385–94. (Aug 1996). doi:10.1074/jbc.271.32.19385. PMID8702625.
“Activation of MLK2-mediated signaling cascades by polyglutamine-expanded huntingtin”. The Journal of Biological Chemistry275 (25): 19035–40. (Jun 2000). doi:10.1074/jbc.C000180200. PMID10801775.
“FIP-2, a coiled-coil protein, links Huntingtin to Rab8 and modulates cellular morphogenesis”. Current Biology10 (24): 1603–6. (2000). doi:10.1016/S0960-9822(00)00864-2. PMID11137014.
“Huntingtin interacts with a family of WW domain proteins”. Human Molecular Genetics7 (9): 1463–74. (Sep 1998). doi:10.1093/hmg/7.9.1463. PMID9700202.
Maiuri, Tamara; Mocle, Andrew J.; Hung, Claudia L.; Xia, Jianrun; van Roon-Mom, Willeke M. C.; Truant, Ray (25 December 2016). “Huntingtin is a scaffolding protein in the ATM oxidative DNA damage response complex”. Human Molecular Genetics26 (2): 395–406. doi:10.1093/hmg/ddw395. PMID28017939.
“Contribution of DNA sequence and CAG size to mutation frequencies of intermediate alleles for Huntington disease: evidence from single sperm analyses”. Human Molecular Genetics6 (2): 301–9. (Feb 1997). doi:10.1093/hmg/6.2.301. PMID9063751.
“Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation”. Cell90 (3): 537–48. (Aug 1997). doi:10.1016/S0092-8674(00)80513-9. PMID9267033.
“Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes”. Cell81 (5): 811–23. (Jun 1995). doi:10.1016/0092-8674(95)90542-1. PMID7774020.
“Traffic signaling: new functions of huntingtin and axonal transport in neurological disease”. Current Opinion in Neurobiology63: 122–130. (August 2020). doi:10.1016/j.conb.2020.04.001. PMID32408142.
“Normal huntingtin function: an alternative approach to Huntington's disease”. Nature Reviews. Neuroscience6 (12): 919–30. (December 2005). doi:10.1038/nrn1806. PMID16288298.
“Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease”. Science293 (5529): 493–8. (July 2001). doi:10.1126/science.1059581. PMID11408619.
“Perinuclear localization of huntingtin as a consequence of its binding to microtubules through an interaction with beta-tubulin: relevance to Huntington's disease”. Journal of Cell Science115 (Pt 5): 941–8. (March 2002). doi:10.1242/jcs.115.5.941. PMID11870213.
“Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons”. Neuron14 (5): 1075–81. (May 1995). doi:10.1016/0896-6273(95)90346-1. PMID7748555.
“Wild-type and mutant huntingtins function in vesicle trafficking in the secretory and endocytic pathways”. Experimental Neurology152 (1): 34–40. (July 1998). doi:10.1006/exnr.1998.6832. PMID9682010.
“The huntingtin interacting protein HIP1 is a clathrin and alpha-adaptin-binding protein involved in receptor-mediated endocytosis”. Human Molecular Genetics10 (17): 1807–17. (August 2001). doi:10.1093/hmg/10.17.1807. PMID11532990.
“The hunt for huntingtin function: interaction partners tell many different stories”. Trends in Biochemical Sciences28 (8): 425–33. (Aug 2003). doi:10.1016/S0968-0004(03)00168-3. PMID12932731.
“A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease”. Molecular Cell15 (6): 853–65. (Sep 2004). doi:10.1016/j.molcel.2004.09.016. PMID15383276.
“HIP-I: a huntingtin interacting protein isolated by the yeast two-hybrid system”. Human Molecular Genetics6 (3): 487–95. (Mar 1997). doi:10.1093/hmg/6.3.487. PMID9147654.
“SH3 domain-dependent association of huntingtin with epidermal growth factor receptor signaling complexes”. The Journal of Biological Chemistry272 (13): 8121–4. (Mar 1997). doi:10.1074/jbc.272.13.8121. PMID9079622.
“PACSIN 1 interacts with huntingtin and is absent from synaptic varicosities in presymptomatic Huntington's disease brains”. Human Molecular Genetics11 (21): 2547–58. (Oct 2002). doi:10.1093/hmg/11.21.2547. PMID12354780.
“SH3GL3 associates with the Huntingtin exon 1 protein and promotes the formation of polygln-containing protein aggregates”. Molecular Cell2 (4): 427–36. (Oct 1998). doi:10.1016/S1097-2765(00)80142-2. PMID9809064.
“Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme”. The Journal of Biological Chemistry271 (32): 19385–94. (Aug 1996). doi:10.1074/jbc.271.32.19385. PMID8702625.
“Activation of MLK2-mediated signaling cascades by polyglutamine-expanded huntingtin”. The Journal of Biological Chemistry275 (25): 19035–40. (Jun 2000). doi:10.1074/jbc.C000180200. PMID10801775.
“FIP-2, a coiled-coil protein, links Huntingtin to Rab8 and modulates cellular morphogenesis”. Current Biology10 (24): 1603–6. (2000). doi:10.1016/S0960-9822(00)00864-2. PMID11137014.
“Huntingtin interacts with a family of WW domain proteins”. Human Molecular Genetics7 (9): 1463–74. (Sep 1998). doi:10.1093/hmg/7.9.1463. PMID9700202.
Maiuri, Tamara; Mocle, Andrew J.; Hung, Claudia L.; Xia, Jianrun; van Roon-Mom, Willeke M. C.; Truant, Ray (25 December 2016). “Huntingtin is a scaffolding protein in the ATM oxidative DNA damage response complex”. Human Molecular Genetics26 (2): 395–406. doi:10.1093/hmg/ddw395. PMID28017939.
“Contribution of DNA sequence and CAG size to mutation frequencies of intermediate alleles for Huntington disease: evidence from single sperm analyses”. Human Molecular Genetics6 (2): 301–9. (Feb 1997). doi:10.1093/hmg/6.2.301. PMID9063751.
“Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation”. Cell90 (3): 537–48. (Aug 1997). doi:10.1016/S0092-8674(00)80513-9. PMID9267033.