フォン・ノイマン=ベルナイス=ゲーデル集合論 (Japanese Wikipedia)

Analysis of information sources in references of the Wikipedia article "フォン・ノイマン=ベルナイス=ゲーデル集合論" in Japanese language version.

refsWebsite
Global rank Japanese rank
low place
low place

wikipedia.org

en.wikipedia.org

  • ベルナイスのクラス存在公理ではクラスがただ一つ定まる。ゲーデルは、ベルナイスの公理のうち3つ(共通部分、補集合、領域)を除くすべてで、双条件英語版論理包含で置き換えることで条件を弱めた。これはクラスの順序対または 3-組のみ特定することを意味する。本節の公理はベルナイスが(順序対のクラスをただ一つ定めるという点で)強めたVの直積以外はゲーデルのものである。ベルナイスの公理によってクラス存在定理の証明が簡単になる。ゲーデルの公理 B6 は組の補題の4番目として現れる。のちにベルナイスは自身の公理の一つが冗長であると気づいた。つまり、ゲーデルの公理の一つも冗長であることが導かれる。ほかの公理を使って、公理 B6 を公理 B8 から証明することができ、また B8 は B6 から証明することができ、これらは互いに冗長な公理とみなせる。[17] 対に関係する公理の名前はフランス語版Wikipediaの記事にならったThéorie des ensembles de von Neumann
  • 整礎な が大域選択公理を含意することはサイズ制限公理の導出英語版を参照。大域選択公理が任意のクラスの整列関係を含意することは Kanamori 2009, p. 53を参照。
  • 1917年、ディミトリー・ミリマノフ英語版は濃度の等価性に基づく形式の置換公理を発表した。[41]
  • 累積階層en:cumulative hierarchichy)の導入後、フォン・ノイマンはツェルメロの公理が非可算無限個の継承可算集合英語版を含む順序数 α ≥ ω + ω の存在を証明できないことを示していたかもしれない。この事実はスコーレムの Vω+ω がツェルメロの公理を満たすという結果[46]と、 α ∈ Vβ が α < βを含意するという結果から従う。[47]
  • アキヒロ・カナモリ英語版はベルナイスが1929〜1930年に自身の公理系に基づいて講義を行ったことと、「…彼とツェルメロはほぼ同時期に基礎(正則性)を組み込む考えに至っていたに違いない」と指摘している。[55]しかし、ベルナイスは1941年まで正則性を自身の公理系に組み込んだものは発表しなかった。[56]
  • この保存拡大定理は1960年代にポール・コーエン、ソール・クリプキ、ロバート・ソロヴェイによって独立に証明された。コーエンの1966年の著書において、この定理について言及し、証明に強制法が必要であると述べている。この定理はロナルド・ジェンセン英語版とウルリッヒ・フェルナー(Ulrich Felgner)によっても独立に証明され、1971年に発表されている。[75]
  • イーストンはZFCの選択公理が成り立つが大域選択公理が成り立たないメンデルソン版NBGのモデル英語版を構成した。

fr.wikipedia.org

  • ベルナイスのクラス存在公理ではクラスがただ一つ定まる。ゲーデルは、ベルナイスの公理のうち3つ(共通部分、補集合、領域)を除くすべてで、双条件英語版論理包含で置き換えることで条件を弱めた。これはクラスの順序対または 3-組のみ特定することを意味する。本節の公理はベルナイスが(順序対のクラスをただ一つ定めるという点で)強めたVの直積以外はゲーデルのものである。ベルナイスの公理によってクラス存在定理の証明が簡単になる。ゲーデルの公理 B6 は組の補題の4番目として現れる。のちにベルナイスは自身の公理の一つが冗長であると気づいた。つまり、ゲーデルの公理の一つも冗長であることが導かれる。ほかの公理を使って、公理 B6 を公理 B8 から証明することができ、また B8 は B6 から証明することができ、これらは互いに冗長な公理とみなせる。[17] 対に関係する公理の名前はフランス語版Wikipediaの記事にならったThéorie des ensembles de von Neumann