“Invention and Early History of Morpholinos: From Pipe Dream to Practical Products” (英語). Morpholino Oligomers. Methods in Molecular Biology. 1565. Humana Press (Springer). (2017). pp. 1–15. doi:10.1007/978-1-4939-6817-6_1. ISBN978-1-4939-6817-6. PMID28364229
“Morpholino antisense oligomers: the case for an RNase H-independent structural type”. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression1489 (1): 141–58. (December 1999). doi:10.1016/S0167-4781(99)00150-5. PMID10807004.
“Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach”. Developmental Biology222 (1): 124–34. (June 2000). doi:10.1006/dbio.2000.9720. PMID10885751.
“SpKrl: a direct target of beta-catenin regulation required for endoderm differentiation in sea urchin embryos”. Development128 (3): 365–75. (February 2001). doi:10.1242/dev.128.3.365. PMID11152635.
“The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos”. Development128 (8): 1467–79. (April 2001). doi:10.1242/dev.128.8.1467. PMID11262245.
“Achieving efficient delivery of morpholino oligos in cultured cells”. Genesis30 (3): 94–102. (July 2001). doi:10.1002/gene.1039. PMID11477682.
“Correction of aberrant FGFR1 alternative RNA splicing through targeting of intronic regulatory elements”. Human Molecular Genetics13 (20): 2409–20. (October 2004). doi:10.1093/hmg/ddh272. PMID15333583.
“Aberrant splicing in the ocular albinism type 1 gene (OA1/GPR143) is corrected in vitro by morpholino antisense oligonucleotides”. Human Mutation27 (5): 420–6. (May 2006). doi:10.1002/humu.20303. PMID16550551.
“Achieving targeted and quantifiable alteration of mRNA splicing with Morpholino oligos”. Biochemical and Biophysical Research Communications358 (2): 521–7. (June 2007). doi:10.1016/j.bbrc.2007.04.172. PMID17493584.
“Splicing segregation: the minor spliceosome acts outside the nucleus and controls cell proliferation”. Cell131 (4): 718–29. (November 2007). doi:10.1016/j.cell.2007.09.043. PMID18022366.
“Quantitative assessment of the knockdown efficiency of morpholino antisense oligonucleotides in zebrafish embryos using a luciferase assay”. Genesis46 (1): 1–7. (January 2008). doi:10.1002/dvg.20361. PMID18196596.
“Resistance of morpholino phosphorodiamidate oligomers to enzymatic degradation”. Antisense & Nucleic Acid Drug Development6 (4): 267–72. (1996). doi:10.1089/oli.1.1996.6.267. PMID9012862.
“Stability of cell-penetrating peptide-morpholino oligomer conjugates in human serum and in cells”. Bioconjugate Chemistry18 (1): 50–60. (2007). doi:10.1021/bc060138s. PMID17226957.
“Dystrophin expression in the mdx mouse after localised and systemic administration of a morpholino antisense oligonucleotide”. The Journal of Gene Medicine8 (2): 207–16. (February 2006). doi:10.1002/jgm.838. PMID16285002.
“Intramural coronary delivery of advanced antisense oligonucleotides reduces neointimal formation in the porcine stent restenosis model”. Journal of the American College of Cardiology39 (10): 1686–91. (May 2002). doi:10.1016/S0735-1097(02)01830-2. PMID12020498.
“Vectorization of morpholino oligomers by the (R-Ahx-R)4 peptide allows efficient splicing correction in the absence of endosomolytic agents”. Journal of Controlled Release116 (3): 304–13. (December 2006). doi:10.1016/j.jconrel.2006.09.011. PMID17097177.
“Pharmacokinetics, biodistribution, stability and toxicity of a cell-penetrating peptide-morpholino oligomer conjugate”. Bioconjugate Chemistry18 (4): 1325–31. (2007). doi:10.1021/bc070060v. PMID17583927.
“Design and synthesis of dendritic molecular transporter that achieves efficient in vivo delivery of morpholino antisense oligo”. Bioconjugate Chemistry19 (7): 1464–70. (July 2008). doi:10.1021/bc8001437. PMID18564870.
“Invention and Early History of Morpholinos: From Pipe Dream to Practical Products” (英語). Morpholino Oligomers. Methods in Molecular Biology. 1565. Humana Press (Springer). (2017). pp. 1–15. doi:10.1007/978-1-4939-6817-6_1. ISBN978-1-4939-6817-6. PMID28364229
“Morpholino antisense oligomers: the case for an RNase H-independent structural type”. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression1489 (1): 141–58. (December 1999). doi:10.1016/S0167-4781(99)00150-5. PMID10807004.
“Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach”. Developmental Biology222 (1): 124–34. (June 2000). doi:10.1006/dbio.2000.9720. PMID10885751.
“SpKrl: a direct target of beta-catenin regulation required for endoderm differentiation in sea urchin embryos”. Development128 (3): 365–75. (February 2001). doi:10.1242/dev.128.3.365. PMID11152635.
“The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos”. Development128 (8): 1467–79. (April 2001). doi:10.1242/dev.128.8.1467. PMID11262245.
“Achieving efficient delivery of morpholino oligos in cultured cells”. Genesis30 (3): 94–102. (July 2001). doi:10.1002/gene.1039. PMID11477682.
“Correction of aberrant FGFR1 alternative RNA splicing through targeting of intronic regulatory elements”. Human Molecular Genetics13 (20): 2409–20. (October 2004). doi:10.1093/hmg/ddh272. PMID15333583.
“Aberrant splicing in the ocular albinism type 1 gene (OA1/GPR143) is corrected in vitro by morpholino antisense oligonucleotides”. Human Mutation27 (5): 420–6. (May 2006). doi:10.1002/humu.20303. PMID16550551.
“Achieving targeted and quantifiable alteration of mRNA splicing with Morpholino oligos”. Biochemical and Biophysical Research Communications358 (2): 521–7. (June 2007). doi:10.1016/j.bbrc.2007.04.172. PMID17493584.
“Splicing segregation: the minor spliceosome acts outside the nucleus and controls cell proliferation”. Cell131 (4): 718–29. (November 2007). doi:10.1016/j.cell.2007.09.043. PMID18022366.
“Quantitative assessment of the knockdown efficiency of morpholino antisense oligonucleotides in zebrafish embryos using a luciferase assay”. Genesis46 (1): 1–7. (January 2008). doi:10.1002/dvg.20361. PMID18196596.
“Resistance of morpholino phosphorodiamidate oligomers to enzymatic degradation”. Antisense & Nucleic Acid Drug Development6 (4): 267–72. (1996). doi:10.1089/oli.1.1996.6.267. PMID9012862.
“Stability of cell-penetrating peptide-morpholino oligomer conjugates in human serum and in cells”. Bioconjugate Chemistry18 (1): 50–60. (2007). doi:10.1021/bc060138s. PMID17226957.
“Dystrophin expression in the mdx mouse after localised and systemic administration of a morpholino antisense oligonucleotide”. The Journal of Gene Medicine8 (2): 207–16. (February 2006). doi:10.1002/jgm.838. PMID16285002.
“Intramural coronary delivery of advanced antisense oligonucleotides reduces neointimal formation in the porcine stent restenosis model”. Journal of the American College of Cardiology39 (10): 1686–91. (May 2002). doi:10.1016/S0735-1097(02)01830-2. PMID12020498.
“Vectorization of morpholino oligomers by the (R-Ahx-R)4 peptide allows efficient splicing correction in the absence of endosomolytic agents”. Journal of Controlled Release116 (3): 304–13. (December 2006). doi:10.1016/j.jconrel.2006.09.011. PMID17097177.
“Pharmacokinetics, biodistribution, stability and toxicity of a cell-penetrating peptide-morpholino oligomer conjugate”. Bioconjugate Chemistry18 (4): 1325–31. (2007). doi:10.1021/bc070060v. PMID17583927.
“Design and synthesis of dendritic molecular transporter that achieves efficient in vivo delivery of morpholino antisense oligo”. Bioconjugate Chemistry19 (7): 1464–70. (July 2008). doi:10.1021/bc8001437. PMID18564870.