双安定性 (Japanese Wikipedia)

Analysis of information sources in references of the Wikipedia article "双安定性" in Japanese language version.

refsWebsite
Global rank Japanese rank
4th place
24th place
2nd place
6th place
18th place
107th place
3rd place
61st place
low place
low place
1,476th place
4,573rd place

books.google.com

  • Morris, Christopher G. (1992). Academic Press Dictionary of Science and Technology. Gulf Professional publishing. pp. 267. ISBN 978-0122004001. https://books.google.com/books?id=nauWlPTBcjIC&pg=PA267&dq=bistable+bistability 
  • Nazarov, Yuli V.; Danon, Jeroen (2013). Advanced Quantum Mechanics: A Practical Guide. Cambridge University Press. pp. 291. ISBN 978-1139619028. https://books.google.com/books?id=w20gAwAAQBAJ&pg=PA291&dq=bistability+minimum 

doi.org

harvard.edu

ui.adsabs.harvard.edu

mssanz.org.au

  • Ket Hing Chong; Sandhya Samarasinghe; Don Kulasiri; Jie Zheng (2015). “Computational techniques in mathematical modelling of biological switches”. MODSIM2015: 578–584.  For detailed techniques of mathematical modelling of bistability, see the tutorial by Chong et al. (2015) http://www.mssanz.org.au/modsim2015/C2/chong.pdf The tutorial provides a simple example illustration of bistability using a synthetic toggle switch proposed in Collins, James J.; Gardner, Timothy S.; Cantor, Charles R. (2000). “Construction of a genetic toggle switch in Escherichia coli”. Nature 403 (6767): 339–42. Bibcode2000Natur.403..339G. doi:10.1038/35002131. PMID 10659857. . The tutorial also uses the dynamical system software XPPAUT http://www.math.pitt.edu/~bard/xpp/xpp.html to show practically how to see bistability captured by a saddle-node bifurcation diagram and the hysteresis behaviours when the bifurcation parameter is increased or decreased slowly over the tipping points and a protein gets turned 'On' or turned 'Off'.

nih.gov

pubmed.ncbi.nlm.nih.gov

ncbi.nlm.nih.gov

pitt.edu

math.pitt.edu

  • Ket Hing Chong; Sandhya Samarasinghe; Don Kulasiri; Jie Zheng (2015). “Computational techniques in mathematical modelling of biological switches”. MODSIM2015: 578–584.  For detailed techniques of mathematical modelling of bistability, see the tutorial by Chong et al. (2015) http://www.mssanz.org.au/modsim2015/C2/chong.pdf The tutorial provides a simple example illustration of bistability using a synthetic toggle switch proposed in Collins, James J.; Gardner, Timothy S.; Cantor, Charles R. (2000). “Construction of a genetic toggle switch in Escherichia coli”. Nature 403 (6767): 339–42. Bibcode2000Natur.403..339G. doi:10.1038/35002131. PMID 10659857. . The tutorial also uses the dynamical system software XPPAUT http://www.math.pitt.edu/~bard/xpp/xpp.html to show practically how to see bistability captured by a saddle-node bifurcation diagram and the hysteresis behaviours when the bifurcation parameter is increased or decreased slowly over the tipping points and a protein gets turned 'On' or turned 'Off'.