Cavalier-Smith, T. (2014). “The neomuran revolution and phagotrophic origin of eukaryotes and cilia in the light of intracellular coevolution and a revised tree of life”. Cold Spring Harb. Perspect. Biol.6 (9). doi:10.1101/cshperspect.a016006. PMID25183828.
Petitjean, C., et al. (2014). “Rooting the Domain archaea by phylogenomic analysis supports the foundation of the new kingdom proteoarchaeota”. Genome. Biol. Evol.7 (1): 191-204. doi:10.1093/gbe/evu274. PMID25527841.
Castelle, C.J., Banfield, J.F. (2018). “Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life”. Cell172 (6): 1181-1197. doi:10.1016/j.cell.2018.02.016. PMID29522741.
Nunoura, T., et al. (2010). “Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group”. Nucleic Acids Research39 (8): 3204-23. doi:10.1093/nar/gkq1228. PMID21169198.
Evans, P. N., et al. (2015). “Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics”. Nucleic Acids Research350 (6259): 434-8. doi:10.1126/science.aac7745. PMID26494757.
Meng, J., et al. (2009). “An uncultivated crenarchaeota contains functional bacteriochlorophyll a synthase”. ISME J.3 (1): 106-16. doi:10.1038/ismej.2008.85. PMID18830277.
Youssef, N. H., et al. (2015). “Insights into the metabolism, lifestyle and putative evolutionary history of the novel archaeal phylum 'Diapherotrites'”. ISME J.9 (2): 447-60. doi:10.1038/ismej.2014.141. PMID25083931.
Baker, B. J., et al. (2010). “Enigmatic, ultrasmall, uncultivated Archaea”. Proc. Natl. Acad. Sci. U S A.107 (19): 8806-11. doi:10.1073/pnas.0914470107. PMID20421484.
Comolli, L. R., et al. (2009). “Three-dimensional analysis of the structure and ecology of a novel, ultra-small archaeon”. ISME J.3 (2): 159-67. doi:10.1038/ismej.2008.99. PMID18946497.
Narasingarao, P., et al. (2012). “De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities”. ISME J.6 (1): 81-93. doi:10.1038/ismej.2011.78. PMID21716304.
Valentine, D. L. (2007). “Adaptations to energy stress dictate the ecology and evolution of the Archaea”. Nat. Rev. Microbiol.5 (4): 316–23. doi:10.1038/nrmicro1619. PMID17334387.
Pikuta, E. V., et al. (2007). “Microbial extremophiles at the limits of life”. Crit. Rev. Microbiol.33 (3): 183–209. doi:10.1080/10408410701451948. PMID17653987.
Takai, K., et al. (2008). “Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation”. Proc. Natl. Acad. Sci. U S A105: 10949-54. doi:10.1073/pnas.0712334105.
Sorokin, D.Y., et al. (2018). “Methanonatronarchaeum thermophilum gen. nov., sp. nov. and Candidatus Methanohalarchaeum thermophilum', extremely halo(natrono)philic methyl-reducing methanogens from hypersaline lakes comprising a new euryarchaeal class Methanonatronarchaeia classis nov.”. Int. J. Syst. Evol. Microbiol.68 (7): 2199-2208. doi:10.1099/ijsem.0.002810. PMID29781801.
Jolivet, E., et al. (2003). “Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation”. Int. J. Syst. Evol. Microbiol.53: 847-51. doi:10.1099/ijs.0.02503-0. PMID12807211.
Christa Schleper (2007). “Diversity of Uncultivated Archaea: Perspectives From Microbial Ecology and Metagenomics”. Archaea: Evolution, Physiology, and Molecular Biology: 39-50. doi:10.1002/9780470750865.ch4.
Teske, A., Sørensen, K. B. (2008). “Uncultured archaea in deep marine subsurface sediments: have we caught them all?”. ISME J.2 (1): 3–18. doi:10.1038/ismej.2007.90. PMID18180743.
Lipp, J. S., et al. (2008). “Significant contribution of Archaea to extant biomass in marine subsurface sediments”. Nature454 (7207): 991. doi:10.1038/nature07174. PMID18641632.
Brochier-Armanet, C., et al. (2008). “Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota”. Nature Reviews Microbiology6 (3): 245–52. doi:10.1038/nrmicro1852. PMID18274537.
Stieglmeier, M., et al. (2014). “Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota”. Int. J. Syst. Evol. Microbiol.64: 2738-52. doi:10.1099/ijs.0.063172-0. PMID24907263.
Qin, W., et al. (2017). “Nitrosopumilus maritimus gen. nov., sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum Thaumarchaeota”. Int. J. Syst. Evol. Microbiol.67 (12): 5067-5079. doi:10.1099/ijsem.0.002416. PMID29034851.
Jung, M.Y., et al. (2018). “Nitrosarchaeum koreense gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon member of the phylum Thaumarchaeota isolated from agricultural soil”. Int. J. Syst. Evol. Microbiol.: 3084-3095. doi:10.1099/ijsem.0.002926. PMID30124400.
Mincer, T.J. et al. (2007). “Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre”. Environ. Microbiol.9 (5): 1162-75. doi:10.1111/j.1462-2920.2007.01239.x. PMID17472632.
Burns, D. G., et al. (2007). “Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain”. Int J Syst Evol Microbiol57: 387-92. doi:10.1099/ijs.0.64690-0.
Kuwabara, T., et al. (2005). “Thermococcus coalescens sp. nov., a cell-fusing hyperthermophilic archaeon from Suiyo Seamount”. Int. J. Syst. Evol. Microbiol.55 (Pt 6): 2507–14. doi:10.1099/ijs.0.63432-0. PMID16280518.
Küper, U., et al. (2010). “Energized outer membrane and spatial separation of metabolic processes in the hyperthermophilic Archaeon Ignicoccus hospitalis”. Proc. Natl. Acad. Sci. U S A107 (7): 3152-6. doi:10.1073/pnas.0911711107.
Heimerl, T., et al. (2017). “A Complex Endomembrane System in the Archaeon Ignicoccus hospitalis Tapped by Nanoarchaeum equitans”. Front. Microbiol.8. doi:10.3389/fmicb.2017.01072.
Nickell, S., et al. (2003). “Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography”. J. Struct. Biol.141 (1): 34–42. doi:10.1016/S1047-8477(02)00581-6. PMID12576018.
Klingl, A. (2014). “S-layer and cytoplasmic membrane – exceptions from the typical archaeal cell wall with a focus on double membranes”. Front. Microbiol.5. doi:10.3389/fmicb.2014.00624. PMID25505452.
Kinosita, Y., et al. (2016). “Direct observation of rotation and steps of the archaellum in the swimming halophilic archaeon Halobacterium salinarum”. Nat. Microbiol.1. doi:10.1038/nmicrobiol.2016.148. PMID27564999.
Zaremba-Niedzwiedzka, K., et al. (2017). “Asgard archaea illuminate the origin of eukaryotic cellular complexity”. Nature541 (7637): 353–358. doi:10.1038/nature21031.
Pratas, D., Pinho, A. (2017). “On the Approximation of the Kolmogorov Complexity for DNA Sequences”. Pattern Recognition and Image Analysis10255: 259–266. doi:10.1007/978-3-319-58838-4_29.
Danovaro, R., et al. (2016). “Virus-mediated archaeal hecatomb in the deep seafloor”. Sci. Adv.2. doi:10.1126/sciadv.1600492.
Dridi, B., et al. (2011). “The antimicrobial resistance pattern of cultured human methanogens reflects the unique phylogenetic position of archaea”. J. Antimicrob. Chemother.66 (9): 2038-44. doi:10.1093/jac/dkr251. PMID21680581.
Huber, H., et al. (2008). “A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis”. Proc Natl Acad Sci U S A105 (22): 7851-6. doi:10.1073/pnas.0801043105.
Samson, R. Y., et al. (2008). “A role for the ESCRT system in cell division in archaea”. Science322 (5908): 1710-3. doi:10.1126/science.1165322. PMID19008417.
Lindås, A.C., et al. (2008). “A unique cell division machinery in the Archaea”. Proc. Natl. Acad. Sci. U S A105 (45): 18942-6. doi:10.1073/pnas.0809467105. PMID18987308.
Cann, I. K. (2008). “Cell sorting protein homologs reveal an unusual diversity in archaeal cell division”. Proc Natl Acad Sci U S A105 (45): 18653-4. doi:10.1073/pnas.0810505106. PMID19033202.
Fröls, S., et al. (2008). “UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation”. Mol. Microbiol.70 (4): 938-52. doi:10.1111/j.1365-2958.2008.06459.x. PMID18990182.
Fröls, S., et al. (2011). “Reactions to UV damage in the model archaeon Sulfolobus solfataricus”. Biochem. Soc. Trans.37: 36-41. doi:10.1042/BST0370036. PMID19143598.
Ajon, M., et al. (2011). “UV-inducible DNA exchange in hyperthermophilic archaea mediated by type IV pili”. Mol. Microbiol.82 (4): 807-17. doi:10.1111/j.1365-2958.2011.07861.x. PMID21999488.
Eppley, J.M., et al. (2007). “Genetic exchange across a species boundary in the archaeal genus ferroplasma”. Genetics177 (1): 407-16. doi:10.1534/genetics.107.072892. PMID17603112.
Francis CA, et al. (2007). “New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation”. ISME J.1 (1): 19–27. doi:10.1038/ismej.2007.8. PMID18043610.
Leininger, S., et al. (2006). “Archaea predominate among ammonia-oxidizing prokaryotes in soils”. Nature442 (7104): 806–9. doi:10.1038/nature04983. PMID16915287.
Boetius, A., et al. (2000). “A marine microbial consortium apparently mediating anaerobic oxidation of methane”. Nature407 (6804): 623-6. doi:10.1038/35036572. PMID11034209.
Doxey, A. C., et al. (2015). “Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production”. ISME J.9 (2): 461-71. doi:10.1038/ismej.2014.142. PMID25126756.
Frigaard, N.U., et al. (2006). “Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea”. Nature439 (7078): 847-50. doi:10.1038/nature04435. PMID16482157.
Cavicchioli, R., et al. (2003). “Pathogenic archaea: do they exist?”. Bioessays25 (11): 1119–28. doi:10.1002/bies.10354. PMID14579252.
Chaban B, et al. (2006). “Archaeal habitats—from the extreme to the ordinary”. Can. J. Microbiol.52 (2): 73–116. doi:10.1139/w05-147. PMID16541146.
Schopf, S., et al. (2008). “An archaeal bi-species biofilm formed by Pyrococcus furiosus and Methanopyrus kandleri”. Arch. Microbiol.190 (3): 371-7. doi:10.1007/s00203-008-0371-9. PMID18438643.
Lange, M., et al. (2005). “Archaea in protozoa and metazoa”. Applied Microbiology and Biotechnology66 (5): 465–474. doi:10.1007/s00253-004-1790-4. PMID15630514.
Brugère, J. F., et al. (2014). “Archaebiotics: proposed therapeutic use of archaea to prevent trimethylaminuria and cardiovascular disease.”. Gut Microbes.5 (1): 5-10. doi:10.4161/gmic.26749.
Namwong, S., et al. (2007). “Halococcus thailandensis sp. nov., from fish sauce in Thailand.”. Int. J. Syst. Evol. Microbiol.57: 2199-203. doi:10.1099/ijs.0.65218-0. PMID17911282.
Norris, P. R., et al. (2000). “Acidophiles in bioreactor mineral processing”. Extremophiles4 (2): 71–6. doi:10.1007/s007920050139. PMID10805560.
Jenney, F. E., Adams, M. W. (January 2008). “The impact of extremophiles on structural genomics (and vice versa)”. Extremophiles12 (1): 39–50. doi:10.1007/s00792-007-0087-9. PMID17563834.
Schiraldi, C., et al. (2002). “Halocins and sulfolobicins: the emerging story of archaeal protein and peptide antibiotics”. J. Ind. Microbiol. Biotechnol.28 (1): 23-31. doi:10.1038/sj/jim/7000190. PMID11938468.
Wilde, S. A., et al. (1980). “Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago”. Earth and Planetary Science Letters47 (3): 370–382. doi:10.1016/0012-821X(80)90024-2.
Manhesa, G., et al. (2001). “Lead isotope study of basic-ultrabasic layered complexes: Speculations about the age of the earth and primitive mantle characteristics”. Earth and Planetary Science Letters409 (6817): 175-8. doi:10.1038/35051550. PMID11196637.
Dodd, M. S., et al. (2017). “Evidence for early life in Earth's oldest hydrothermal vent precipitates”. Nature543 (7643). doi:10.1038/nature21377. PMID28252057.
Bell, E. A., et al. (2015). “Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon”. Proc. Natl. Acad. Sci. U S A112 (47): 14518-21. doi:10.1073/pnas.1517557112. PMID26483481.
Wolfe, J. M., et al. (2018). “Horizontal gene transfer constrains the timing of methanogen evolution”. Nat. Ecol. Evol.2 (5): 897-903. doi:10.1038/s41559-018-0513-7. PMID29610466.
Betts, H. C., et al. (2018). “Integrated genomic and fossil evidence illuminates life's early evolution and eukaryote origin”. Nat. Ecol. Evol.2: 1556–1562. doi:10.1038/s41559-018-0644-x. PMID30127539.
Theobald, D. L. (2010). “A formal test of the theory of universal common ancestry”. Nature465 (7295): 219-22. doi:10.1038/nature09014. PMID20463738.
Cavalier-Smith, T. (2002). “The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification”. Cold Spring Harb Perspect Biol.52: 7-76. doi:10.1099/00207713-52-1-7.
Cox, C. J., et al. (2008). “The Deep Archaeal Roots of Eukaryotes”. Proc. Natl. Acad. Sci. U S A105 (51): 20356–20361. doi:10.1073/pnas.0810647105. PMID19073919.
Williams, T. A., et al. (2013). “An archaeal origin of eukaryotes supports only two primary domains of life”. Nature504 (7479): 231-6. doi:10.1038/nature12779. PMID24336283.
Lake, J. A., et al. (1988). “Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences”. Nature331 (6152): 184-6. doi:10.1038/331184a0. PMID3340165.
Nunoura, T., et al. (2011). “Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group”. Nucleic Acids Res39 (8): 3204-23. doi:10.1093/nar/gkq1228. PMID21169198.
Brock, T. D., et al. (1972). “Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature”. Arch. Mikrobiol.84: 54–68. doi:10.1007/BF00408082. PMID4559703.
DOI, R.H., IGARASHI, R.T. (March 1965). “Conservation of Ribosomal and Messenger Ribonucleic Acid Cistrons in Bacillus Species”. J. Bacteriol.90: 384-90. doi:10.1016/0022-5193(65)90083-4. PMID14329452.
Takahashi, H., et al. (1969). “Conserved portion in bacterial ribosomal RNA”. J. Gen. Appl. Microbiol.15 (2): 209-216. doi:10.2323/jgam.15.209.
Zuckerkandl, E., Pauling, L. (March 1965). “Molecules as documents of evolutionary history”. Journal of Theoretical Biology8 (2): 357–66. doi:10.1016/0022-5193(65)90083-4. PMID5876245.
Sapp, J. (2007). “The structure of microbial evolutionary theory.”. Stud. Hist. Philos. Biol. Biomed. Sci.38 (4): 780-95. doi:10.1016/j.shpsc.2007.09.011. PMID18053933.
Stetter, K. O. (1982). “Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105 °C”. Nature300: 258 - 260. doi:10.1038/300258a0.
Bult, C.J., et al. (1996). “Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii”. Science273 (5278): 1058–1073. doi:10.1126/science.273.5278.1058. PMID868808.
No authors (2002). “Validation of publication of new names and new combinations previously effectively published outside the IJSEM. International Journal of Systematic and Evolutionary Microbiology”. Int. J. Syst. Evol. Microbiol.52: 685-90. doi:10.1099/00207713-52-3-685. PMID12054225.
Woese, C.R., et al. (1990). “Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya”. Proc. Natl. Acad. Sci. U S A87 (12): 4576–9. PMID2112744.
Cavalier-Smith, T. (2014). “The neomuran revolution and phagotrophic origin of eukaryotes and cilia in the light of intracellular coevolution and a revised tree of life”. Cold Spring Harb. Perspect. Biol.6 (9). doi:10.1101/cshperspect.a016006. PMID25183828.
Petitjean, C., et al. (2014). “Rooting the Domain archaea by phylogenomic analysis supports the foundation of the new kingdom proteoarchaeota”. Genome. Biol. Evol.7 (1): 191-204. doi:10.1093/gbe/evu274. PMID25527841.
Castelle, C.J., Banfield, J.F. (2018). “Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life”. Cell172 (6): 1181-1197. doi:10.1016/j.cell.2018.02.016. PMID29522741.
Nunoura, T., et al. (2010). “Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group”. Nucleic Acids Research39 (8): 3204-23. doi:10.1093/nar/gkq1228. PMID21169198.
Barns, S. M., et al. (1996). “Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences”. Proc Natl Acad Sci U S A93 (17): 9188–9193. PMID8799176.
Elkins, J. G., et al. (2008). “A korarchaeal genome reveals insights into the evolution of the Archaea”. Proc Natl Acad Sci U S A105 (23): 8102–7. PMID18535141.
Evans, P. N., et al. (2015). “Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics”. Nucleic Acids Research350 (6259): 434-8. doi:10.1126/science.aac7745. PMID26494757.
Meng, J., et al. (2009). “An uncultivated crenarchaeota contains functional bacteriochlorophyll a synthase”. ISME J.3 (1): 106-16. doi:10.1038/ismej.2008.85. PMID18830277.
Takai, K., Horikoshi, K. (2016). “Genetic diversity of archaea in deep-sea hydrothermal vent environments”. Genetics152 (4): 1285-97. PMID10430559.
Youssef, N. H., et al. (2015). “Insights into the metabolism, lifestyle and putative evolutionary history of the novel archaeal phylum 'Diapherotrites'”. ISME J.9 (2): 447-60. doi:10.1038/ismej.2014.141. PMID25083931.
Baker, B. J., et al. (2010). “Enigmatic, ultrasmall, uncultivated Archaea”. Proc. Natl. Acad. Sci. U S A.107 (19): 8806-11. doi:10.1073/pnas.0914470107. PMID20421484.
Comolli, L. R., et al. (2009). “Three-dimensional analysis of the structure and ecology of a novel, ultra-small archaeon”. ISME J.3 (2): 159-67. doi:10.1038/ismej.2008.99. PMID18946497.
Narasingarao, P., et al. (2012). “De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities”. ISME J.6 (1): 81-93. doi:10.1038/ismej.2011.78. PMID21716304.
Waters, E., et al. (2003). “The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism”. Proc Natl Acad Sci U S A100 (22): 12984–8. PMID14566062.
Valentine, D. L. (2007). “Adaptations to energy stress dictate the ecology and evolution of the Archaea”. Nat. Rev. Microbiol.5 (4): 316–23. doi:10.1038/nrmicro1619. PMID17334387.
Pikuta, E. V., et al. (2007). “Microbial extremophiles at the limits of life”. Crit. Rev. Microbiol.33 (3): 183–209. doi:10.1080/10408410701451948. PMID17653987.
Schleper, C., et al. (1995). “Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0”. J. Bacteriol.177: 7050–7059. PMID8522509.
Sorokin, D.Y., et al. (2018). “Methanonatronarchaeum thermophilum gen. nov., sp. nov. and Candidatus Methanohalarchaeum thermophilum', extremely halo(natrono)philic methyl-reducing methanogens from hypersaline lakes comprising a new euryarchaeal class Methanonatronarchaeia classis nov.”. Int. J. Syst. Evol. Microbiol.68 (7): 2199-2208. doi:10.1099/ijsem.0.002810. PMID29781801.
Schleper, C., et al. (1995). “Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0”. J. Bacteriol.177: 7050–7059. PMID8522509.
Jolivet, E., et al. (2003). “Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation”. Int. J. Syst. Evol. Microbiol.53: 847-51. doi:10.1099/ijs.0.02503-0. PMID12807211.
Teske, A., Sørensen, K. B. (2008). “Uncultured archaea in deep marine subsurface sediments: have we caught them all?”. ISME J.2 (1): 3–18. doi:10.1038/ismej.2007.90. PMID18180743.
Lipp, J. S., et al. (2008). “Significant contribution of Archaea to extant biomass in marine subsurface sediments”. Nature454 (7207): 991. doi:10.1038/nature07174. PMID18641632.
López-García, P., et al. (2001). “Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front”. FEMS Microbiol. Ecol.36 (2–3): 193–202. PMID11451524.
Brochier-Armanet, C., et al. (2008). “Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota”. Nature Reviews Microbiology6 (3): 245–52. doi:10.1038/nrmicro1852. PMID18274537.
Konneke, M., et al. (2005). “Isolation of an autotrophic ammonia-oxidizing marine archaeon”. Nature437: 543–546. PMID16177789.
Stieglmeier, M., et al. (2014). “Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota”. Int. J. Syst. Evol. Microbiol.64: 2738-52. doi:10.1099/ijs.0.063172-0. PMID24907263.
Qin, W., et al. (2017). “Nitrosopumilus maritimus gen. nov., sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum Thaumarchaeota”. Int. J. Syst. Evol. Microbiol.67 (12): 5067-5079. doi:10.1099/ijsem.0.002416. PMID29034851.
Jung, M.Y., et al. (2018). “Nitrosarchaeum koreense gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon member of the phylum Thaumarchaeota isolated from agricultural soil”. Int. J. Syst. Evol. Microbiol.: 3084-3095. doi:10.1099/ijsem.0.002926. PMID30124400.
Mincer, T.J. et al. (2007). “Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre”. Environ. Microbiol.9 (5): 1162-75. doi:10.1111/j.1462-2920.2007.01239.x. PMID17472632.
Golyshina, O. V., et al. (2000). “Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea”. Int. J. Syst. Evol. Microbiol.50 Pt 3 (3): 997–1006. PMID10843038.
Kuwabara, T., et al. (2005). “Thermococcus coalescens sp. nov., a cell-fusing hyperthermophilic archaeon from Suiyo Seamount”. Int. J. Syst. Evol. Microbiol.55 (Pt 6): 2507–14. doi:10.1099/ijs.0.63432-0. PMID16280518.
Huber H, et al. (2000). “Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov.”. Int. J. Syst. Evol. Microbiol.50: 2093–100. PMID11155984.
Nickell, S., et al. (2003). “Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography”. J. Struct. Biol.141 (1): 34–42. doi:10.1016/S1047-8477(02)00581-6. PMID12576018.
Klingl, A. (2014). “S-layer and cytoplasmic membrane – exceptions from the typical archaeal cell wall with a focus on double membranes”. Front. Microbiol.5. doi:10.3389/fmicb.2014.00624. PMID25505452.
Kinosita, Y., et al. (2016). “Direct observation of rotation and steps of the archaellum in the swimming halophilic archaeon Halobacterium salinarum”. Nat. Microbiol.1. doi:10.1038/nmicrobiol.2016.148. PMID27564999.
Ng, S. Y., et al. (2006). “Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications”. J. Mol. Microbiol. Biotechnol.11 (3-5): 167–91. PMID16983194.
Metlina, A. L. (2004). “Bacterial and archaeal flagella as prokaryotic motility organelles”. Biochemistry (Mosc)69 (11): 1203–12. PMID15627373.
Hixon, W. G., Searcy, D. G. (1993). “Cytoskeleton in the archaebacterium Thermoplasma acidophilum? Viscosity increase in soluble extracts”. Biosystems29 (2-3): 151–60. PMID8374067.
Waters, E., et al. (2003). “The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism”. Proc. Natl. Acad. Sci. U S A100 (22): 12984–8. PMID14566062.
Galagan JE, et al. (2002). “The genome of M. acetivorans reveals extensive metabolic and physiological diversity”. Genome Res12 (4): 532–42. PMID11932238.
Musgrave, D. R., et al. (1991). “DNA binding by the archaeal histone HMf results in positive supercoiling”. Proc Natl Acad Sci U S A88 (23): 10397–401. PMID1660135.
Fahrner, R. L., et al. (2001). “An ancestral nuclear protein assembly: crystal structure of the Methanopyrus kandleri histone”. Protein Sci.10 (10): 2002–7. PMID11567091.
Pereira, S.L., et al. (1997). “Archaeal nucleosomes”. Proc. Natl. Acad. Sci. USA.94: 12633-12637. PMID9356501.
DeLange, R. J., et al. (1981). “A histone-like protein (HTa) from Thermoplasma acidophilum. II. Complete amino acid sequence”. J. Biol. Chem.256 (2): 905–11. PMID7005226.
Luo, X., et al. (2007). “CC1, a novel crenarchaeal DNA binding protein”. J. Bacteriol.189 (2): 403–9. PMID17085561.
Barry, E. R., Bell, S. D. (2006). “DNA replication in the archaea”. Microbiol Mol Biol Rev70 (4): 876–87. PMID17158702.
Robinson, N. P., Bell, S. D. (2005). “Origins of DNA replication in the three domains of life”. FEBS J272 (15): 3757–66. PMID16045748.
Matsunaga, F., et al. (2003). “Identification of short 'eukaryotic' Okazaki fragments synthesized from a prokaryotic replication origin”. EMBO Rep4 (2): 154–8. PMID12612604.
Robinson, N.P., et al. (2004). “Identification of two origins of replication in the single chromosome of the archaeon Sulfolobus solfataricus”. CELL161 (1): 25–38. PMID14718164.
Lecompte, O., et al. (2002). “Comparative analysis of ribosomal proteins in complete genomes: An example of reductive evolution at the domain scale”. Nucleic Acids Research30: 5382–5390. PMID12490706.
Dridi, B., et al. (2011). “The antimicrobial resistance pattern of cultured human methanogens reflects the unique phylogenetic position of archaea”. J. Antimicrob. Chemother.66 (9): 2038-44. doi:10.1093/jac/dkr251. PMID21680581.
Samson, R. Y., et al. (2008). “A role for the ESCRT system in cell division in archaea”. Science322 (5908): 1710-3. doi:10.1126/science.1165322. PMID19008417.
Lindås, A.C., et al. (2008). “A unique cell division machinery in the Archaea”. Proc. Natl. Acad. Sci. U S A105 (45): 18942-6. doi:10.1073/pnas.0809467105. PMID18987308.
Cann, I. K. (2008). “Cell sorting protein homologs reveal an unusual diversity in archaeal cell division”. Proc Natl Acad Sci U S A105 (45): 18653-4. doi:10.1073/pnas.0810505106. PMID19033202.
Rosenshine, I., et al. (1989). “The mechanism of DNA transfer in the mating system of an archaebacterium”. Science245 (4924): 1387-9. PMID2818746.
Fröls, S., et al. (2008). “UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation”. Mol. Microbiol.70 (4): 938-52. doi:10.1111/j.1365-2958.2008.06459.x. PMID18990182.
Fröls, S., et al. (2011). “Reactions to UV damage in the model archaeon Sulfolobus solfataricus”. Biochem. Soc. Trans.37: 36-41. doi:10.1042/BST0370036. PMID19143598.
Ajon, M., et al. (2011). “UV-inducible DNA exchange in hyperthermophilic archaea mediated by type IV pili”. Mol. Microbiol.82 (4): 807-17. doi:10.1111/j.1365-2958.2011.07861.x. PMID21999488.
Eppley, J.M., et al. (2007). “Genetic exchange across a species boundary in the archaeal genus ferroplasma”. Genetics177 (1): 407-16. doi:10.1534/genetics.107.072892. PMID17603112.
Francis CA, et al. (2007). “New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation”. ISME J.1 (1): 19–27. doi:10.1038/ismej.2007.8. PMID18043610.
Leininger, S., et al. (2006). “Archaea predominate among ammonia-oxidizing prokaryotes in soils”. Nature442 (7104): 806–9. doi:10.1038/nature04983. PMID16915287.
Boetius, A., et al. (2000). “A marine microbial consortium apparently mediating anaerobic oxidation of methane”. Nature407 (6804): 623-6. doi:10.1038/35036572. PMID11034209.
Doxey, A. C., et al. (2015). “Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production”. ISME J.9 (2): 461-71. doi:10.1038/ismej.2014.142. PMID25126756.
Frigaard, N.U., et al. (2006). “Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea”. Nature439 (7078): 847-50. doi:10.1038/nature04435. PMID16482157.
Schopf, S., et al. (2008). “An archaeal bi-species biofilm formed by Pyrococcus furiosus and Methanopyrus kandleri”. Arch. Microbiol.190 (3): 371-7. doi:10.1007/s00203-008-0371-9. PMID18438643.
Lange, M., et al. (2005). “Archaea in protozoa and metazoa”. Applied Microbiology and Biotechnology66 (5): 465–474. doi:10.1007/s00253-004-1790-4. PMID15630514.
van Hoek, A. H., et al. (2000). “Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates”. Mol. Biol. Evol.17 (2): 251–8. PMID10677847.
Samuel, B.S., et al. (2007). “Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut”. Proc. Natl. Acad. Sci. U S A104 (25): 10643–8. PMID17563350.
Vianna, M. E., et al. (2006). “Identification and quantification of archaea involved in primary endodontic infections”. J. Clin. Microbiol.44 (4): 1274–82. PMID16597851.
Chaudhary, P.P., et al. (2018). “Methanogens in humans: potentially beneficial or harmful for health”. Appl. Microbiol. Biotechnol.102 (7): 3095-3104. doi:10.1007/s00253-018-8871-2. PMID29497795.
Namwong, S., et al. (2007). “Halococcus thailandensis sp. nov., from fish sauce in Thailand.”. Int. J. Syst. Evol. Microbiol.57: 2199-203. doi:10.1099/ijs.0.65218-0. PMID17911282.
Norris, P. R., et al. (2000). “Acidophiles in bioreactor mineral processing”. Extremophiles4 (2): 71–6. doi:10.1007/s007920050139. PMID10805560.
Schiraldi, C., et al. (2002). “Perspectives on biotechnological applications of archaea”. Archaea1 (2): 75–86. PMID15803645.
Jenney, F. E., Adams, M. W. (January 2008). “The impact of extremophiles on structural genomics (and vice versa)”. Extremophiles12 (1): 39–50. doi:10.1007/s00792-007-0087-9. PMID17563834.
Schiraldi, C., et al. (2002). “Halocins and sulfolobicins: the emerging story of archaeal protein and peptide antibiotics”. J. Ind. Microbiol. Biotechnol.28 (1): 23-31. doi:10.1038/sj/jim/7000190. PMID11938468.
Iwabe, N., et al. (1989). “Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes”. Proc. Natl. Acad. Sci. U S A86 (23): 9355–9. PMID2531898.
Manhesa, G., et al. (2001). “Lead isotope study of basic-ultrabasic layered complexes: Speculations about the age of the earth and primitive mantle characteristics”. Earth and Planetary Science Letters409 (6817): 175-8. doi:10.1038/35051550. PMID11196637.
Dodd, M. S., et al. (2017). “Evidence for early life in Earth's oldest hydrothermal vent precipitates”. Nature543 (7643). doi:10.1038/nature21377. PMID28252057.
Bell, E. A., et al. (2015). “Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon”. Proc. Natl. Acad. Sci. U S A112 (47): 14518-21. doi:10.1073/pnas.1517557112. PMID26483481.
Ueno, Y., et al. (2006). “Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era”. Nature440 (7083): 516–519. PMID16554816.
Feng, D. F., et al. (1997). “Determining divergence times with a protein clock: update and reevaluation”. Proc. Natl. Acad. Sci. U S A94 (24): 13028–33. PMID9371794.
Wolfe, J. M., et al. (2018). “Horizontal gene transfer constrains the timing of methanogen evolution”. Nat. Ecol. Evol.2 (5): 897-903. doi:10.1038/s41559-018-0513-7. PMID29610466.
Betts, H. C., et al. (2018). “Integrated genomic and fossil evidence illuminates life's early evolution and eukaryote origin”. Nat. Ecol. Evol.2: 1556–1562. doi:10.1038/s41559-018-0644-x. PMID30127539.
Theobald, D. L. (2010). “A formal test of the theory of universal common ancestry”. Nature465 (7295): 219-22. doi:10.1038/nature09014. PMID20463738.
Gogarten, J.P., et al. (1989). “Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes”. Proc. Natl. Acad. Sci. U S A86 (27): 6661–5. PMID2528146.
Lake, J. A., et al. (1992). “Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences”. Science257 (5066): 74-6. PMID1621096.
Baldauf, S. L., et al. (1996). “The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny”. Proc. Natl. Acad. Sci. U S A93 (15): 7749-54. PMID8755547.
Woese, C. (1998). “The universal ancestor”. Proc. Natl. Acad. Sci. U S A95 (12): 6854-9. PMID9618502.
Cox, C. J., et al. (2008). “The Deep Archaeal Roots of Eukaryotes”. Proc. Natl. Acad. Sci. U S A105 (51): 20356–20361. doi:10.1073/pnas.0810647105. PMID19073919.
Williams, T. A., et al. (2013). “An archaeal origin of eukaryotes supports only two primary domains of life”. Nature504 (7479): 231-6. doi:10.1038/nature12779. PMID24336283.
Katoh, K., et al. (2001). “Genetic algorithm-based maximum-likelihood analysis for molecular phylogeny”. J. Mol. Evol.53 (4-5): 477–84. PMID11675608.
Battistuzzi, F. U., et al. (2004). “A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land”. BMC. Evol. Biol.4 (44). PMID15535883.
Baldauf, S. L., et al. (1996). “The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny”. Proc Natl Acad Sci U S A93 (15): 7749-54. PMID8755547.
Lake, J. A., et al. (1984). “Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes”. Proc. Natl. Acad. Sci. U S A81 (12): 3786-90. PMID6587394.
Lake, J. A., et al. (1988). “Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences”. Nature331 (6152): 184-6. doi:10.1038/331184a0. PMID3340165.
Nunoura, T., et al. (2011). “Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group”. Nucleic Acids Res39 (8): 3204-23. doi:10.1093/nar/gkq1228. PMID21169198.
Poole, A. M., Penny, D. (2007). “Evaluating hypotheses for the origin of eukaryotes”. Bioessays29 (1): 74-84. PMID17187354.
Woese, C. R., Fox, G. E. (1977). “Phylogenetic structure of the prokaryotic domain: the primary kingdoms”. Proc. Natl. Acad. Sci. U S A74 (11): 5088–90. PMID270744.
Hori, H., Osawa, S. (1987). “Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences”. Mol. Biol. Evol.4 (5): 445–72. PMID2452957.
Brock, T.D., et al. (1969). “Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile”. J. Bacteriol.98 (1): 289-97. PMID5781580.
Darland, G., et al. (1970). “A thermophilic, acidophilic mycoplasma isolated from a coal refuse pile”. Science170 (3965): 1416-8. PMID5481857.
Brock, T.D., et al. (1972). “Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature”. Arch. Mikrobiol.84 (1): 54-68. PMID4559703.
Sehgal, S.N., et al. (1962). “Lipids of Halobacterium cutirubrum”. Can J Biochem Physiol40: 69-81. PMID13910279.
Langworthy, T.A., et al. (1972). “Lipids of Thermoplasma acidophilum”. J Bacteriol112 (3): 1193-200. PMID4344918.
Brock, T. D., et al. (1972). “Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature”. Arch. Mikrobiol.84: 54–68. doi:10.1007/BF00408082. PMID4559703.
Kimura, M. (1968). “Evolutionary rate at the molecular level”. Nature217 (5129): 624-6. PMID5637732.
DOI, R.H., IGARASHI, R.T. (March 1965). “Conservation of Ribosomal and Messenger Ribonucleic Acid Cistrons in Bacillus Species”. J. Bacteriol.90: 384-90. doi:10.1016/0022-5193(65)90083-4. PMID14329452.
Zuckerkandl, E., Pauling, L. (March 1965). “Molecules as documents of evolutionary history”. Journal of Theoretical Biology8 (2): 357–66. doi:10.1016/0022-5193(65)90083-4. PMID5876245.
Makula, R.A., Singer, M. E. (1978). “Ether-containing lipids of methanogenic bacteria”. Biochem. Biophys. Res. Commun.82 (2): 716–22. PMID666868.
Tornabene, T.G., et al. (1978). “Phytanyl-glycerol ethers and squalenes in the archaebacterium Methanobacterium thermoautotrophicum”. J. Mol. Evol.11 (3): 259–66. PMID691077.
Woese, C. R., et al. (1978). “Archaebacteria”. J Mol Evol11 (3): 245–51. PMID691075.
Mayr, E. (1998). “Two empires or three?”. Proc. Natl. Acad. Sci. U S A95 (17): 9720-3. PMID9707542.
Sapp, J. (2007). “The structure of microbial evolutionary theory.”. Stud. Hist. Philos. Biol. Biomed. Sci.38 (4): 780-95. doi:10.1016/j.shpsc.2007.09.011. PMID18053933.
Bult, C.J., et al. (1996). “Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii”. Science273 (5278): 1058–1073. doi:10.1126/science.273.5278.1058. PMID868808.
No authors (2002). “Validation of publication of new names and new combinations previously effectively published outside the IJSEM. International Journal of Systematic and Evolutionary Microbiology”. Int. J. Syst. Evol. Microbiol.52: 685-90. doi:10.1099/00207713-52-3-685. PMID12054225.
Kaneko, T., et al. (1996). “Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions”. DNA Res.3 (3): 109-36. PMID8905231.