“Cystic fibrosis transmembrane conductance regulator protein expression in the male excretory duct system during development”. Human Pathology43 (3): 390–7. (March 2012). doi:10.1016/j.humpath.2011.04.031. PMID21840567.
“Prevalence of deltaF508, G551D, G542X, and R553X mutations among cystic fibrosis patients in the North of Brazil”. Brazilian Journal of Medical and Biological Research = Revista Brasileira De Pesquisas Medicas E Biologicas38 (1): 11–5. (January 2005). doi:10.1590/S0100-879X2005000100003. PMID15665983.
“Cystic fibrosis: a worldwide analysis of CFTR mutations--correlation with incidence data and application to screening”. Human Mutation19 (6): 575–606. (June 2002). doi:10.1002/humu.10041. PMID12007216.
“Role of airway surface liquid and submucosal glands in cystic fibrosis lung disease”. American Journal of Physiology. Cell Physiology284 (1): C2-15. (January 2003). doi:10.1152/ajpcell.00417.2002. PMID12475759.
“Fifteen-year follow-up of pulmonary function in individuals heterozygous for the cystic fibrosis phenylalanine-508 deletion”. The Journal of Allergy and Clinical Immunology107 (5): 818–23. (May 2001). doi:10.1067/mai.2001.114117. PMID11344348.
“Increased prevalence of chronic rhinosinusitis in carriers of a cystic fibrosis mutation”. Archives of Otolaryngology–Head & Neck Surgery131 (3): 237–40. (March 2005). doi:10.1001/archotol.131.3.237. PMID15781764.
“The origin of the major cystic fibrosis mutation (delta F508) in European populations”. Nature Genetics7 (2): 169–75. (June 1994). doi:10.1038/ng0694-169. PMID7920636.
“An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton”. The Journal of Biological Chemistry273 (31): 19797–801. (July 1998). doi:10.1074/jbc.273.31.19797. PMID9677412.
“Epithelial sodium channels (ENaC) are uniformly distributed on motile cilia in the oviduct and the respiratory airways”. Histochemistry and Cell Biology137 (3): 339–53. (March 2012). doi:10.1007/s00418-011-0904-1. PMID22207244.
“Localization of epithelial sodium channel (ENaC) and CFTR in the germinal epithelium of the testis, Sertoli cells, and spermatozoa”. Journal of Molecular Histology49 (2): 195–208. (April 2018). doi:10.1007/s10735-018-9759-2. PMID29453757.
“Mapping the sites of localization of epithelial sodium channel (ENaC) and CFTR in segments of the mammalian epididymis”. Journal of Molecular Histology50 (2): 141–154. (April 2019). doi:10.1007/s10735-019-09813-3. PMID30659401.
“Cysteine string protein interacts with and modulates the maturation of the cystic fibrosis transmembrane conductance regulator”. The Journal of Biological Chemistry277 (32): 28948–58. (August 2002). doi:10.1074/jbc.M111706200. PMID12039948.
“A Golgi-associated PDZ domain protein modulates cystic fibrosis transmembrane regulator plasma membrane expression”. The Journal of Biological Chemistry277 (5): 3520–9. (February 2002). doi:10.1074/jbc.M110177200. PMID11707463.
“The PDZ-binding chloride channel ClC-3B localizes to the Golgi and associates with cystic fibrosis transmembrane conductance regulator-interacting PDZ proteins”. The Journal of Biological Chemistry278 (8): 6440–9. (February 2003). doi:10.1074/jbc.M211050200. PMID12471024.
“Accessory protein facilitated CFTR-CFTR interaction, a molecular mechanism to potentiate the chloride channel activity”. Cell103 (1): 169–79. (September 2000). doi:10.1016/S0092-8674(00)00096-9. PMID11051556.
“Protein kinase C epsilon-dependent regulation of cystic fibrosis transmembrane regulator involves binding to a receptor for activated C kinase (RACK1) and RACK1 binding to Na+/H+ exchange regulatory factor”. The Journal of Biological Chemistry277 (25): 22925–33. (June 2002). doi:10.1074/jbc.M201917200. PMID11956211.
“The cystic fibrosis transmembrane conductance regulator interacts with and regulates the activity of the HCO3- salvage transporter human Na+-HCO3- cotransport isoform 3”. The Journal of Biological Chemistry277 (52): 50503–9. (December 2002). doi:10.1074/jbc.M201862200. PMID12403779.
“C-terminal phosphorylation of MRP2 modulates its interaction with PDZ proteins”. Biochemical and Biophysical Research Communications302 (3): 454–61. (March 2003). doi:10.1016/S0006-291X(03)00196-7. PMID12615054.
“Peptide binding consensus of the NHE-RF-PDZ1 domain matches the C-terminal sequence of cystic fibrosis transmembrane conductance regulator (CFTR)”. FEBS Letters427 (1): 103–8. (May 1998). doi:10.1016/S0014-5793(98)00402-5. PMID9613608.
“The PDZ-interacting domain of cystic fibrosis transmembrane conductance regulator is required for functional expression in the apical plasma membrane”. The Journal of Biological Chemistry275 (35): 27069–74. (September 2000). doi:10.1074/jbc.M004951200. PMID10852925.
“E3KARP mediates the association of ezrin and protein kinase A with the cystic fibrosis transmembrane conductance regulator in airway cells”. The Journal of Biological Chemistry275 (38): 29539–46. (September 2000). doi:10.1074/jbc.M004961200. PMID10893422.
“Cystic fibrosis transmembrane conductance regulator protein expression in the male excretory duct system during development”. Human Pathology43 (3): 390–7. (March 2012). doi:10.1016/j.humpath.2011.04.031. PMID21840567.
“Prevalence of deltaF508, G551D, G542X, and R553X mutations among cystic fibrosis patients in the North of Brazil”. Brazilian Journal of Medical and Biological Research = Revista Brasileira De Pesquisas Medicas E Biologicas38 (1): 11–5. (January 2005). doi:10.1590/S0100-879X2005000100003. PMID15665983.
“Cystic fibrosis: a worldwide analysis of CFTR mutations--correlation with incidence data and application to screening”. Human Mutation19 (6): 575–606. (June 2002). doi:10.1002/humu.10041. PMID12007216.
“Role of airway surface liquid and submucosal glands in cystic fibrosis lung disease”. American Journal of Physiology. Cell Physiology284 (1): C2-15. (January 2003). doi:10.1152/ajpcell.00417.2002. PMID12475759.
“Fifteen-year follow-up of pulmonary function in individuals heterozygous for the cystic fibrosis phenylalanine-508 deletion”. The Journal of Allergy and Clinical Immunology107 (5): 818–23. (May 2001). doi:10.1067/mai.2001.114117. PMID11344348.
“Increased prevalence of chronic rhinosinusitis in carriers of a cystic fibrosis mutation”. Archives of Otolaryngology–Head & Neck Surgery131 (3): 237–40. (March 2005). doi:10.1001/archotol.131.3.237. PMID15781764.
“The origin of the major cystic fibrosis mutation (delta F508) in European populations”. Nature Genetics7 (2): 169–75. (June 1994). doi:10.1038/ng0694-169. PMID7920636.
“An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton”. The Journal of Biological Chemistry273 (31): 19797–801. (July 1998). doi:10.1074/jbc.273.31.19797. PMID9677412.
“Epithelial sodium channels (ENaC) are uniformly distributed on motile cilia in the oviduct and the respiratory airways”. Histochemistry and Cell Biology137 (3): 339–53. (March 2012). doi:10.1007/s00418-011-0904-1. PMID22207244.
“Localization of epithelial sodium channel (ENaC) and CFTR in the germinal epithelium of the testis, Sertoli cells, and spermatozoa”. Journal of Molecular Histology49 (2): 195–208. (April 2018). doi:10.1007/s10735-018-9759-2. PMID29453757.
“Mapping the sites of localization of epithelial sodium channel (ENaC) and CFTR in segments of the mammalian epididymis”. Journal of Molecular Histology50 (2): 141–154. (April 2019). doi:10.1007/s10735-019-09813-3. PMID30659401.
“Cysteine string protein interacts with and modulates the maturation of the cystic fibrosis transmembrane conductance regulator”. The Journal of Biological Chemistry277 (32): 28948–58. (August 2002). doi:10.1074/jbc.M111706200. PMID12039948.
“A Golgi-associated PDZ domain protein modulates cystic fibrosis transmembrane regulator plasma membrane expression”. The Journal of Biological Chemistry277 (5): 3520–9. (February 2002). doi:10.1074/jbc.M110177200. PMID11707463.
“The PDZ-binding chloride channel ClC-3B localizes to the Golgi and associates with cystic fibrosis transmembrane conductance regulator-interacting PDZ proteins”. The Journal of Biological Chemistry278 (8): 6440–9. (February 2003). doi:10.1074/jbc.M211050200. PMID12471024.
“Accessory protein facilitated CFTR-CFTR interaction, a molecular mechanism to potentiate the chloride channel activity”. Cell103 (1): 169–79. (September 2000). doi:10.1016/S0092-8674(00)00096-9. PMID11051556.
“Protein kinase C epsilon-dependent regulation of cystic fibrosis transmembrane regulator involves binding to a receptor for activated C kinase (RACK1) and RACK1 binding to Na+/H+ exchange regulatory factor”. The Journal of Biological Chemistry277 (25): 22925–33. (June 2002). doi:10.1074/jbc.M201917200. PMID11956211.
“The cystic fibrosis transmembrane conductance regulator interacts with and regulates the activity of the HCO3- salvage transporter human Na+-HCO3- cotransport isoform 3”. The Journal of Biological Chemistry277 (52): 50503–9. (December 2002). doi:10.1074/jbc.M201862200. PMID12403779.
“C-terminal phosphorylation of MRP2 modulates its interaction with PDZ proteins”. Biochemical and Biophysical Research Communications302 (3): 454–61. (March 2003). doi:10.1016/S0006-291X(03)00196-7. PMID12615054.
“Peptide binding consensus of the NHE-RF-PDZ1 domain matches the C-terminal sequence of cystic fibrosis transmembrane conductance regulator (CFTR)”. FEBS Letters427 (1): 103–8. (May 1998). doi:10.1016/S0014-5793(98)00402-5. PMID9613608.
“The PDZ-interacting domain of cystic fibrosis transmembrane conductance regulator is required for functional expression in the apical plasma membrane”. The Journal of Biological Chemistry275 (35): 27069–74. (September 2000). doi:10.1074/jbc.M004951200. PMID10852925.
“E3KARP mediates the association of ezrin and protein kinase A with the cystic fibrosis transmembrane conductance regulator in airway cells”. The Journal of Biological Chemistry275 (38): 29539–46. (September 2000). doi:10.1074/jbc.M004961200. PMID10893422.