基底関数系 (化学) (Japanese Wikipedia)

Analysis of information sources in references of the Wikipedia article "基底関数系 (化学)" in Japanese language version.

refsWebsite
Global rank Japanese rank
2nd place
6th place
18th place
107th place
4th place
24th place
5,551st place
375th place

doi.org

  • Roman M. Balabin (2010). “Intramolecular basis set superposition error as a measure of basis set incompleteness: Can one reach the basis set limit without extrapolation?”. J. Chem. Phys. 132 (21): 211103. Bibcode2010JChPh.132u1103B. doi:10.1063/1.3430647. PMID 20528011. 
  • Davidson, Ernest; Feller, David (1986). “Basis set selection for molecular calculations”. Chem. Rev. 86 (4): 681–696. doi:10.1021/cr00074a002. 
  • Ditchfield, R; Hehre, W.J; Pople, J. A. (1971). “Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules”. J. Chem. Phys. 54 (2): 724–728. Bibcode1971JChPh..54..724D. doi:10.1063/1.1674902. 
  • Dunning, Thomas H. (1989). “Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen”. J. Chem. Phys. 90 (2): 1007–1023. Bibcode1989JChPh..90.1007D. doi:10.1063/1.456153. 
  • Weigenda, Florian; Ahlrichsb, Reinhart (2005). “Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy”. Phys. Chem. Chem. Phys. 7 (18): 3297–3305. doi:10.1039/B508541A. 
  • Weigendab, Florian (2006). “Accurate Coulomb-fitting basis sets for H to Rn”. Phys. Chem. Chem. Phys. 8 (9): 1057–1065. doi:10.1039/B515623H. 
  • Hill, J. Grant (2013). “Gaussian basis sets for molecular applications”. International Journal of Quantum Chemistry 113 (1): 21–34. doi:10.1002/qua.24355. 

harvard.edu

ui.adsabs.harvard.edu

  • Roman M. Balabin (2010). “Intramolecular basis set superposition error as a measure of basis set incompleteness: Can one reach the basis set limit without extrapolation?”. J. Chem. Phys. 132 (21): 211103. Bibcode2010JChPh.132u1103B. doi:10.1063/1.3430647. PMID 20528011. 
  • Ditchfield, R; Hehre, W.J; Pople, J. A. (1971). “Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules”. J. Chem. Phys. 54 (2): 724–728. Bibcode1971JChPh..54..724D. doi:10.1063/1.1674902. 
  • Dunning, Thomas H. (1989). “Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen”. J. Chem. Phys. 90 (2): 1007–1023. Bibcode1989JChPh..90.1007D. doi:10.1063/1.456153. 

nagoya-u.ac.jp

www2.itc.nagoya-u.ac.jp

nih.gov

pubmed.ncbi.nlm.nih.gov

  • Roman M. Balabin (2010). “Intramolecular basis set superposition error as a measure of basis set incompleteness: Can one reach the basis set limit without extrapolation?”. J. Chem. Phys. 132 (21): 211103. Bibcode2010JChPh.132u1103B. doi:10.1063/1.3430647. PMID 20528011.