標準模型を超える物理 (Japanese Wikipedia)

Analysis of information sources in references of the Wikipedia article "標準模型を超える物理" in Japanese language version.

refsWebsite
Global rank Japanese rank
69th place
227th place
18th place
107th place
2nd place
6th place
4th place
24th place
1,959th place
6,208th place
2,509th place
3,753rd place
1st place
1st place
low place
low place
9th place
8th place
896th place
2,100th place
low place
low place
low place
low place
6th place
146th place
14th place
320th place
2,036th place
5,194th place
low place
low place

archive.org

archive.today

arxiv.org

  • Lykken, J. D. (2010). “Beyond the Standard Model”. CERN Yellow Report. CERN. pp. 101–109. arXiv:1005.1676. Bibcode2010arXiv1005.1676L. CERN-2010-002 
  • Sushkov, A. O.; Kim, W. J.; Dalvit, D. A. R.; Lamoreaux, S. K. (2011). “New Experimental Limits on Non-Newtonian Forces in the Micrometer Range”. Physical Review Letters 107 (17): 171101. arXiv:1108.2547. Bibcode2011PhRvL.107q1101S. doi:10.1103/PhysRevLett.107.171101. PMID 22107498. "It is remarkable that two of the greatest successes of 20th century physics, general relativity and the standard model, appear to be fundamentally incompatible."  But see also Donoghue, John F. (2012). “The effective field theory treatment of quantum gravity”. AIP Conference Proceedings 1473 (1): 73. arXiv:1209.3511. Bibcode2012AIPC.1483...73D. doi:10.1063/1.4756964. "One can find thousands of statements in the literature to the effect that “general relativity and quantum mechanics are incompatible”. These are completely outdated and no longer relevant. Effective field theory shows that general relativity and quantum mechanics work together perfectly normally over a range of scales and curvatures, including those relevant for the world that we see around us. However, effective field theories are only valid over some range of scales. General relativity certainly does have problematic issues at extreme scales. There are important problems which the effective field theory does not solve because they are beyond its range of validity. However, this means that the issue of quantum gravity is not what we thought it to be. Rather than a fundamental incompatibility of quantum mechanics and gravity, we are in the more familiar situation of needing a more complete theory beyond the range of their combined applicability. The usual marriage of general relativity and quantum mechanics is fine at ordinary energies, but we now seek to uncover the modifications that must be present in more extreme conditions. This is the modern view of the problem of quantum gravity, and it represents progress over the outdated view of the past."" 
  • Randolf Pohl; Ronald Gilman; Gerald A. Miller; Krzysztof Pachucki (2013). “Muonic hydrogen and the proton radius puzzle”. Annu. Rev. Nucl. Part. Sci. 63: 175–204. arXiv:1301.0905. Bibcode2013ARNPS..63..175P. doi:10.1146/annurev-nucl-102212-170627. "The recent determination of the proton radius using the measurement of the Lamb shift in the muonic hydrogen atom startled the physics world. The obtained value of 0.84087(39) fm differs by about 4% or 7 standard deviations from the CODATA value of 0.8775(51) fm. The latter is composed from the electronic hydrogenate atom value of 0.8758(77) fm and from a similar value with larger uncertainties determined by electron scattering." 
  • Carlson, Carl E. (May 2015). “The Proton Radius Puzzle”. Progress in Particle and Nuclear Physics 82: 59–77. arXiv:1502.05314. Bibcode2015PrPNP..82...59C. doi:10.1016/j.ppnp.2015.01.002. 
  • Thomas Blum; Achim Denig; Ivan Logashenko; Eduardo de Rafael (2013). "The Muon (g - 2) Theory Value: Present and Future". arXiv:1311.2198
  • Lees, J. P. (2012). “Evidence for an excess of B → D(*) τ− τν decays”. Physical Review Letters 109 (10): 101802. arXiv:1205.5442. Bibcode2012PhRvL.109j1802L. doi:10.1103/PhysRevLett.109.101802. PMID 23005279. 
  • Aaij, R. (2015). “Measurement of the Ratio of Branching Fractions ...”. Physical Review Letters 115 (11): 111803. arXiv:1506.08614. Bibcode2015PhRvL.115k1803A. doi:10.1103/PhysRevLett.115.111803. PMID 26406820. 
  • Capdevila, Bernat (2018). “Patterns of New Physics in transitions in the light of recent data”. Journal of High Energy Physics 2018: 093. arXiv:1704.05340. doi:10.1007/JHEP01(2018)093. 
  • Buchmüller, W. (2002). "Neutrinos, Grand Unification and Leptogenesis". arXiv:hep-ph/0204288
  • P., Nath; P. F., Perez (2007). “Proton stability in grand unified theories, in strings, and in branes”. Physics Reports 441 (5–6): 191–317. arXiv:hep-ph/0601023. Bibcode2007PhR...441..191N. doi:10.1016/j.physrep.2007.02.010. 
  • Senjanovic, G. (2011). "Probing the Origin of Neutrino Mass: from GUT to LHC". arXiv:1107.5322 [hep-ph]。
  • Grossman, Y. (2003). "TASI 2002 lectures on neutrinos". arXiv:hep-ph/0305245v1
  • Dodelson, S.; Widrow, L. M. (1994). “Sterile neutrinos as dark matter”. Physical Review Letters 72 (1): 17–20. arXiv:hep-ph/9303287. Bibcode1994PhRvL..72...17D. doi:10.1103/PhysRevLett.72.17. PMID 10055555. 
  • Altarelli, G. (2007). "Lectures on Models of Neutrino Masses and Mixings". arXiv:0711.0161 [hep-ph]。
  • Murayama, H. (2007). "Physics Beyond the Standard Model and Dark Matter". arXiv:0704.2276 [hep-ph]。
  • Zenczykowski, P. (2008). “The Harari-Shupe preon model and nonrelativistic quantum phase space”. Physics Letters B 660 (5): 567–572. arXiv:0803.0223. Bibcode2008PhLB..660..567Z. doi:10.1016/j.physletb.2008.01.045. 
  • Abdo, A.A. (2009). “A limit on the variation of the speed of light arising from quantum gravity effects”. Nature 462 (7271): 331–334. arXiv:0908.1832. Bibcode2009Natur.462..331A. doi:10.1038/nature08574. PMID 19865083. 
  • Maldacena, J.; Strominger, A.; Witten, E. (1997). “Black hole entropy in M-Theory”. Journal of High Energy Physics 1997 (12): 2. arXiv:hep-th/9711053. Bibcode1997JHEP...12..002M. doi:10.1088/1126-6708/1997/12/002. 
  • Randall, L.; Sundrum, R. (1999). “Large Mass Hierarchy from a Small Extra Dimension”. Physical Review Letters 83 (17): 3370–3373. arXiv:hep-ph/9905221. Bibcode1999PhRvL..83.3370R. doi:10.1103/PhysRevLett.83.3370. 
  • Randall, L.; Sundrum, R. (1999). “An Alternative to Compactification”. Physical Review Letters 83 (23): 4690–4693. arXiv:hep-th/9906064. Bibcode1999PhRvL..83.4690R. doi:10.1103/PhysRevLett.83.4690. 

cern.ch

home.web.cern.ch

indico.cern.ch

doi.org

harvard.edu

ui.adsabs.harvard.edu

lbl.gov

pdg.lbl.gov

pdglive.lbl.gov

marcofrasca.wordpress.com

  • Marco Frasca (2009年3月31日). “What is a Glueball?”. The Gauge Connection. 2019年9月閲覧。 エラー: 閲覧日は年・月・日のすべてを記入してください。

nih.gov

pubmed.ncbi.nlm.nih.gov

  • Sushkov, A. O.; Kim, W. J.; Dalvit, D. A. R.; Lamoreaux, S. K. (2011). “New Experimental Limits on Non-Newtonian Forces in the Micrometer Range”. Physical Review Letters 107 (17): 171101. arXiv:1108.2547. Bibcode2011PhRvL.107q1101S. doi:10.1103/PhysRevLett.107.171101. PMID 22107498. "It is remarkable that two of the greatest successes of 20th century physics, general relativity and the standard model, appear to be fundamentally incompatible."  But see also Donoghue, John F. (2012). “The effective field theory treatment of quantum gravity”. AIP Conference Proceedings 1473 (1): 73. arXiv:1209.3511. Bibcode2012AIPC.1483...73D. doi:10.1063/1.4756964. "One can find thousands of statements in the literature to the effect that “general relativity and quantum mechanics are incompatible”. These are completely outdated and no longer relevant. Effective field theory shows that general relativity and quantum mechanics work together perfectly normally over a range of scales and curvatures, including those relevant for the world that we see around us. However, effective field theories are only valid over some range of scales. General relativity certainly does have problematic issues at extreme scales. There are important problems which the effective field theory does not solve because they are beyond its range of validity. However, this means that the issue of quantum gravity is not what we thought it to be. Rather than a fundamental incompatibility of quantum mechanics and gravity, we are in the more familiar situation of needing a more complete theory beyond the range of their combined applicability. The usual marriage of general relativity and quantum mechanics is fine at ordinary energies, but we now seek to uncover the modifications that must be present in more extreme conditions. This is the modern view of the problem of quantum gravity, and it represents progress over the outdated view of the past."" 
  • Lees, J. P. (2012). “Evidence for an excess of B → D(*) τ− τν decays”. Physical Review Letters 109 (10): 101802. arXiv:1205.5442. Bibcode2012PhRvL.109j1802L. doi:10.1103/PhysRevLett.109.101802. PMID 23005279. 
  • Aaij, R. (2015). “Measurement of the Ratio of Branching Fractions ...”. Physical Review Letters 115 (11): 111803. arXiv:1506.08614. Bibcode2015PhRvL.115k1803A. doi:10.1103/PhysRevLett.115.111803. PMID 26406820. 
  • Dodelson, S.; Widrow, L. M. (1994). “Sterile neutrinos as dark matter”. Physical Review Letters 72 (1): 17–20. arXiv:hep-ph/9303287. Bibcode1994PhRvL..72...17D. doi:10.1103/PhysRevLett.72.17. PMID 10055555. 
  • Abdo, A.A. (2009). “A limit on the variation of the speed of light arising from quantum gravity effects”. Nature 462 (7271): 331–334. arXiv:0908.1832. Bibcode2009Natur.462..331A. doi:10.1038/nature08574. PMID 19865083. 

osti.gov

profmattstrassler.com

scientificamerican.com

symmetrymagazine.org

web.archive.org

wikipedia.org

en.wikipedia.org

youtube.com