Sushkov, A. O.; Kim, W. J.; Dalvit, D. A. R.; Lamoreaux, S. K. (2011). “New Experimental Limits on Non-Newtonian Forces in the Micrometer Range”. Physical Review Letters107 (17): 171101. arXiv:1108.2547. Bibcode: 2011PhRvL.107q1101S. doi:10.1103/PhysRevLett.107.171101. PMID22107498. "It is remarkable that two of the greatest successes of 20th century physics, general relativity and the standard model, appear to be fundamentally incompatible." But see also Donoghue, John F. (2012). “The effective field theory treatment of quantum gravity”. AIP Conference Proceedings1473 (1): 73. arXiv:1209.3511. Bibcode: 2012AIPC.1483...73D. doi:10.1063/1.4756964. "One can find thousands of statements in the literature to the effect that “general relativity and quantum mechanics are incompatible”. These are completely outdated and no longer relevant. Effective field theory shows that general relativity and quantum mechanics work together perfectly normally over a range of scales and curvatures, including those relevant for the world that we see around us. However, effective field theories are only valid over some range of scales. General relativity certainly does have problematic issues at extreme scales. There are important problems which the effective field theory does not solve because they are beyond its range of validity. However, this means that the issue of quantum gravity is not what we thought it to be. Rather than a fundamental incompatibility of quantum mechanics and gravity, we are in the more familiar situation of needing a more complete theory beyond the range of their combined applicability. The usual marriage of general relativity and quantum mechanics is fine at ordinary energies, but we now seek to uncover the modifications that must be present in more extreme conditions. This is the modern view of the problem of quantum gravity, and it represents progress over the outdated view of the past.""
Randolf Pohl; Ronald Gilman; Gerald A. Miller; Krzysztof Pachucki (2013). “Muonic hydrogen and the proton radius puzzle”. Annu. Rev. Nucl. Part. Sci.63: 175–204. arXiv:1301.0905. Bibcode: 2013ARNPS..63..175P. doi:10.1146/annurev-nucl-102212-170627. "The recent determination of the proton radius using the measurement of the Lamb shift in the muonic hydrogen atom startled the physics world. The obtained value of 0.84087(39) fm differs by about 4% or 7 standard deviations from the CODATA value of 0.8775(51) fm. The latter is composed from the electronic hydrogenate atom value of 0.8758(77) fm and from a similar value with larger uncertainties determined by electron scattering."
Capdevila, Bernat (2018). “Patterns of New Physics in transitions in the light of recent data”. Journal of High Energy Physics2018: 093. arXiv:1704.05340. doi:10.1007/JHEP01(2018)093.
Buchmüller, W. (2002). "Neutrinos, Grand Unification and Leptogenesis". arXiv:hep-ph/0204288。
Sushkov, A. O.; Kim, W. J.; Dalvit, D. A. R.; Lamoreaux, S. K. (2011). “New Experimental Limits on Non-Newtonian Forces in the Micrometer Range”. Physical Review Letters107 (17): 171101. arXiv:1108.2547. Bibcode: 2011PhRvL.107q1101S. doi:10.1103/PhysRevLett.107.171101. PMID22107498. "It is remarkable that two of the greatest successes of 20th century physics, general relativity and the standard model, appear to be fundamentally incompatible." But see also Donoghue, John F. (2012). “The effective field theory treatment of quantum gravity”. AIP Conference Proceedings1473 (1): 73. arXiv:1209.3511. Bibcode: 2012AIPC.1483...73D. doi:10.1063/1.4756964. "One can find thousands of statements in the literature to the effect that “general relativity and quantum mechanics are incompatible”. These are completely outdated and no longer relevant. Effective field theory shows that general relativity and quantum mechanics work together perfectly normally over a range of scales and curvatures, including those relevant for the world that we see around us. However, effective field theories are only valid over some range of scales. General relativity certainly does have problematic issues at extreme scales. There are important problems which the effective field theory does not solve because they are beyond its range of validity. However, this means that the issue of quantum gravity is not what we thought it to be. Rather than a fundamental incompatibility of quantum mechanics and gravity, we are in the more familiar situation of needing a more complete theory beyond the range of their combined applicability. The usual marriage of general relativity and quantum mechanics is fine at ordinary energies, but we now seek to uncover the modifications that must be present in more extreme conditions. This is the modern view of the problem of quantum gravity, and it represents progress over the outdated view of the past.""
Randolf Pohl; Ronald Gilman; Gerald A. Miller; Krzysztof Pachucki (2013). “Muonic hydrogen and the proton radius puzzle”. Annu. Rev. Nucl. Part. Sci.63: 175–204. arXiv:1301.0905. Bibcode: 2013ARNPS..63..175P. doi:10.1146/annurev-nucl-102212-170627. "The recent determination of the proton radius using the measurement of the Lamb shift in the muonic hydrogen atom startled the physics world. The obtained value of 0.84087(39) fm differs by about 4% or 7 standard deviations from the CODATA value of 0.8775(51) fm. The latter is composed from the electronic hydrogenate atom value of 0.8758(77) fm and from a similar value with larger uncertainties determined by electron scattering."
Capdevila, Bernat (2018). “Patterns of New Physics in transitions in the light of recent data”. Journal of High Energy Physics2018: 093. arXiv:1704.05340. doi:10.1007/JHEP01(2018)093.
Sushkov, A. O.; Kim, W. J.; Dalvit, D. A. R.; Lamoreaux, S. K. (2011). “New Experimental Limits on Non-Newtonian Forces in the Micrometer Range”. Physical Review Letters107 (17): 171101. arXiv:1108.2547. Bibcode: 2011PhRvL.107q1101S. doi:10.1103/PhysRevLett.107.171101. PMID22107498. "It is remarkable that two of the greatest successes of 20th century physics, general relativity and the standard model, appear to be fundamentally incompatible." But see also Donoghue, John F. (2012). “The effective field theory treatment of quantum gravity”. AIP Conference Proceedings1473 (1): 73. arXiv:1209.3511. Bibcode: 2012AIPC.1483...73D. doi:10.1063/1.4756964. "One can find thousands of statements in the literature to the effect that “general relativity and quantum mechanics are incompatible”. These are completely outdated and no longer relevant. Effective field theory shows that general relativity and quantum mechanics work together perfectly normally over a range of scales and curvatures, including those relevant for the world that we see around us. However, effective field theories are only valid over some range of scales. General relativity certainly does have problematic issues at extreme scales. There are important problems which the effective field theory does not solve because they are beyond its range of validity. However, this means that the issue of quantum gravity is not what we thought it to be. Rather than a fundamental incompatibility of quantum mechanics and gravity, we are in the more familiar situation of needing a more complete theory beyond the range of their combined applicability. The usual marriage of general relativity and quantum mechanics is fine at ordinary energies, but we now seek to uncover the modifications that must be present in more extreme conditions. This is the modern view of the problem of quantum gravity, and it represents progress over the outdated view of the past.""
Randolf Pohl; Ronald Gilman; Gerald A. Miller; Krzysztof Pachucki (2013). “Muonic hydrogen and the proton radius puzzle”. Annu. Rev. Nucl. Part. Sci.63: 175–204. arXiv:1301.0905. Bibcode: 2013ARNPS..63..175P. doi:10.1146/annurev-nucl-102212-170627. "The recent determination of the proton radius using the measurement of the Lamb shift in the muonic hydrogen atom startled the physics world. The obtained value of 0.84087(39) fm differs by about 4% or 7 standard deviations from the CODATA value of 0.8775(51) fm. The latter is composed from the electronic hydrogenate atom value of 0.8758(77) fm and from a similar value with larger uncertainties determined by electron scattering."
Marco Frasca (2009年3月31日). “What is a Glueball?”. The Gauge Connection. 2019年9月閲覧。 エラー: 閲覧日は年・月・日のすべてを記入してください。
nih.gov
pubmed.ncbi.nlm.nih.gov
Sushkov, A. O.; Kim, W. J.; Dalvit, D. A. R.; Lamoreaux, S. K. (2011). “New Experimental Limits on Non-Newtonian Forces in the Micrometer Range”. Physical Review Letters107 (17): 171101. arXiv:1108.2547. Bibcode: 2011PhRvL.107q1101S. doi:10.1103/PhysRevLett.107.171101. PMID22107498. "It is remarkable that two of the greatest successes of 20th century physics, general relativity and the standard model, appear to be fundamentally incompatible." But see also Donoghue, John F. (2012). “The effective field theory treatment of quantum gravity”. AIP Conference Proceedings1473 (1): 73. arXiv:1209.3511. Bibcode: 2012AIPC.1483...73D. doi:10.1063/1.4756964. "One can find thousands of statements in the literature to the effect that “general relativity and quantum mechanics are incompatible”. These are completely outdated and no longer relevant. Effective field theory shows that general relativity and quantum mechanics work together perfectly normally over a range of scales and curvatures, including those relevant for the world that we see around us. However, effective field theories are only valid over some range of scales. General relativity certainly does have problematic issues at extreme scales. There are important problems which the effective field theory does not solve because they are beyond its range of validity. However, this means that the issue of quantum gravity is not what we thought it to be. Rather than a fundamental incompatibility of quantum mechanics and gravity, we are in the more familiar situation of needing a more complete theory beyond the range of their combined applicability. The usual marriage of general relativity and quantum mechanics is fine at ordinary energies, but we now seek to uncover the modifications that must be present in more extreme conditions. This is the modern view of the problem of quantum gravity, and it represents progress over the outdated view of the past.""