準群 (Japanese Wikipedia)

Analysis of information sources in references of the Wikipedia article "準群" in Japanese language version.

refsWebsite
Global rank Japanese rank
2nd place
6th place
low place
low place
6th place
146th place
3rd place
61st place
451st place
1,252nd place
low place
low place
5th place
19th place
942nd place
3,490th place
1,923rd place
3,500th place

ams.org

mathscinet.ams.org

  • Romanowska, Anna B.; Smith, Jonathan D. H. (1999), “Example 4.1.3 (Zassenhaus's Commutative Moufang Loop)”, Post-modern algebra, Pure and Applied Mathematics, New York: Wiley, p. 93, doi:10.1002/9781118032589, ISBN 978-0-471-12738-3, MR1673047, https://books.google.com/books?id=i5SlbIA-KwUC&pg=PA93 

anu.edu.au

cs.anu.edu.au

archive.org

  • H. Rubin; J. E. Rubin (1985). Equivalents of the Axiom of Choice, II. Elsevier. p. 109 

books.google.com

  • Romanowska, Anna B.; Smith, Jonathan D. H. (1999), “Example 4.1.3 (Zassenhaus's Commutative Moufang Loop)”, Post-modern algebra, Pure and Applied Mathematics, New York: Wiley, p. 93, doi:10.1002/9781118032589, ISBN 978-0-471-12738-3, MR1673047, https://books.google.com/books?id=i5SlbIA-KwUC&pg=PA93 

doi.org

  • Damm, H. Michael (2007). “Totally anti-symmetric quasigroups for all orders n ≠ 2, 6”. Discrete Mathematics 307 (6): 715–729. doi:10.1016/j.disc.2006.05.033. 
  • Romanowska, Anna B.; Smith, Jonathan D. H. (1999), “Example 4.1.3 (Zassenhaus's Commutative Moufang Loop)”, Post-modern algebra, Pure and Applied Mathematics, New York: Wiley, p. 93, doi:10.1002/9781118032589, ISBN 978-0-471-12738-3, MR1673047, https://books.google.com/books?id=i5SlbIA-KwUC&pg=PA93 
  • McKay, Brendan D.; Meynert, Alison; Myrvold, Wendy (2007). “Small Latin squares, quasigroups, and loops”. J. Comb. Des. 15 (2): 98–119. doi:10.1002/jcd.20105. Zbl 1112.05018. http://cs.anu.edu.au/~bdm/papers/ls_final.pdf. 

quasigroups.eu

wikipedia.org

en.wikipedia.org

  • 「擬群」と呼ばれることもあるが、この名称はpseudogroupの訳英語版としても用いられるため注意を要する。

worldcat.org

search.worldcat.org

zbmath.org