Harko, Tiberiu; Lobo, Francisco S. N.; Mak, M. K. (2014). “Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates” (英語). Applied Mathematics and Computation236: 184–194. arXiv:1403.2160. Bibcode: 2014arXiv1403.2160H. doi:10.1016/j.amc.2014.03.030.
Kermack, W. O.; McKendrick, A. G. (1927). “A Contribution to the Mathematical Theory of Epidemics”. Proceedings of the Royal Society A115 (772): 700–721. Bibcode: 1927RSPSA.115..700K. doi:10.1098/rspa.1927.0118.
Harko, Tiberiu; Lobo, Francisco S. N.; Mak, M. K. (2014). “Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates” (英語). Applied Mathematics and Computation236: 184–194. arXiv:1403.2160. Bibcode: 2014arXiv1403.2160H. doi:10.1016/j.amc.2014.03.030.
Hethcote, Herbert W. (1989). “Three Basic Epidemiological Models”. In Levin, Simon A.; Hallam, Thomas G.; Gross, Louis J.. Applied Mathematical Ecology. Biomathematics. 18. Berlin: Springer. pp. 119–144. doi:10.1007/978-3-642-61317-3_5. ISBN3-540-19465-7
Bartlett MS (1957). “Measles periodicity and community size”. Journal of the Royal Statistical Society, Series A120 (1): 48–70. doi:10.2307/2342553. JSTOR2342553.
harvard.edu
ui.adsabs.harvard.edu
Kermack, W. O.; McKendrick, A. G. (1927). “A Contribution to the Mathematical Theory of Epidemics”. Proceedings of the Royal Society A115 (772): 700–721. Bibcode: 1927RSPSA.115..700K. doi:10.1098/rspa.1927.0118.
Harko, Tiberiu; Lobo, Francisco S. N.; Mak, M. K. (2014). “Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates” (英語). Applied Mathematics and Computation236: 184–194. arXiv:1403.2160. Bibcode: 2014arXiv1403.2160H. doi:10.1016/j.amc.2014.03.030.
jstor.org
Bartlett MS (1957). “Measles periodicity and community size”. Journal of the Royal Statistical Society, Series A120 (1): 48–70. doi:10.2307/2342553. JSTOR2342553.