D.H.J. Polymath (2014). “Variants of the Selberg sieve, and bounded intervals containing many primes”. Research in the Mathematical Sciences1 (12). arXiv:1407.4897. doi:10.1186/s40687-014-0012-7. MR3373710.
D.H.J. Polymath (2014). “Variants of the Selberg sieve, and bounded intervals containing many primes”. Research in the Mathematical Sciences1 (12). arXiv:1407.4897. doi:10.1186/s40687-014-0012-7. MR3373710.
Baker, R. C.; Harman, G.; Pintz, J. (2001). “The difference between consecutive primes, II”. Proceedings of the London Mathematical Society83 (3): 532–562. doi:10.1112/plms/83.3.532.
D.H.J. Polymath (2014). “Variants of the Selberg sieve, and bounded intervals containing many primes”. Research in the Mathematical Sciences1 (12). arXiv:1407.4897. doi:10.1186/s40687-014-0012-7. MR3373710.
Pintz, J. (1997). “Very large gaps between consecutive primes”. Journal of Number Theory63 (2): 286–301. doi:10.1006/jnth.1997.2081.
Pintz, János (September 2007). “Cramér vs. Cramér: On Cramér's probabilistic model for primes”. Functiones et Approximatio Commentarii Mathematici37 (2): 232–471. doi:10.7169/facm/1229619660.
Westzynthius, E. (1931), “Über die Verteilung der Zahlen die zu den n ersten Primzahlen teilerfremd sind” (ドイツ語), Commentationes Physico-Mathematicae Helsingsfors5: 1-37, JFM57.0186.02, Zbl0003.24601.
Hoheisel, G. (1930). “Primzahlprobleme in der Analysis”. Sitzunsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin33: 3–11. JFM56.0172.02.