“Visiting "noncodarnia"”. BioTechniques54 (6): 301, 303–4. (June 2013). doi:10.2144/000114037. PMID23750541. ""We're calling long noncoding RNAs a class, when actually the only definition is that they are longer than 200 bp," says Ana Marques, a Research Fellow at the University of Oxford who uses evolutionary approaches to understand lncRNA function."
“Characterization and identification of long non-coding RNAs based on feature relationship”. Bioinformatics41 (Database issue): D246–D251. (January 2019). doi:10.1093/bioinformatics/btz008. PMID30649200.
“Pattern recognition analysis on long noncoding RNAs: a tool for prediction in plants”. Briefings in Bioinformatics20 (2): 682–689. (2019). doi:10.1093/bib/bby034. PMID29697740.
“Evolution to the rescue: using comparative genomics to understand long non-coding RNAs”. Nature Reviews Genetics17 (10): 601–614. (October 2016). doi:10.1038/nrg.2016.85. PMID27573374.
“Pervasive transcription of the eukaryotic genome: functional indices and conceptual implications”. Briefings in Functional Genomics & Proteomics8 (6): 407–423. (November 2009). doi:10.1093/bfgp/elp038. PMID19770204.
“Cloning of the mRNA of overexpression in colon carcinoma-1: a sequence overexpressed in a subset of colon carcinomas”. Cancer Genetics and Cytogenetics133 (1): 55–60. (February 2002). doi:10.1016/S0165-4608(01)00634-3. PMID11890990.
“Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas”. Cancer Cell12 (3): 215–229. (September 2007). doi:10.1016/j.ccr.2007.07.027. PMID17785203.
“Divergent lncRNAs Regulate Gene Expression and Lineage Differentiation in Pluripotent Cells”. Cell Stem Cell18 (5): 637–652. (May 2016). doi:10.1016/j.stem.2016.01.024. PMID26996597.
“Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript”. Nature445 (7128): 666–670. (February 2007). doi:10.1038/nature05519. PMID17237763.
“Inhibition of P-TEFb (CDK9/Cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA”. Molecular Cell12 (4): 971–982. (October 2003). doi:10.1016/S1097-2765(03)00388-5. PMID14580347.
“Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock”. Molecular Cell29 (4): 499–509. (February 2008). doi:10.1016/j.molcel.2007.12.013. PMID18313387.
“Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms”. BioEssays25 (10): 930–939. (October 2003). doi:10.1002/bies.10332. PMID14505360.
“Chromosomal silencing and localization are mediated by different domains of Xist RNA”. Nature Genetics30 (2): 167–174. (February 2002). doi:10.1038/ng820. PMID11780141.
“Identification of new Xlsirt family members in the Xenopus laevis oocyte”. Mechanisms of Development120 (4): 503–509. (April 2003). doi:10.1016/S0925-4773(02)00459-8. PMID12676327.
“Expression of enhanced levels of small RNA polymerase III transcripts encoded by the B2 repeats in simian virus 40-transformed mouse cells”. Nature314 (6011): 553–556. (1985). Bibcode: 1985Natur.314..553S. doi:10.1038/314553a0. PMID2581137.
“Increased level of polymerase III transcribed Alu RNA in hepatocellular carcinoma tissue”. Molecular Carcinogenesis42 (2): 93–96. (February 2005). doi:10.1002/mc.20057. PMID15593371.
“LIT1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids”. Human Molecular Genetics8 (7): 1209–1217. (July 1999). doi:10.1093/hmg/8.7.1209. PMID10369866.
“Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes”. Nature Genetics36 (12): 1296–1300. (December 2004). doi:10.1038/ng1467. PMID15516932.
“BC200 RNA in normal human neocortex, non-Alzheimer dementia (NAD), and senile dementia of the Alzheimer type (AD)”. Neurochemical Research17 (6): 591–597. (June 1992). doi:10.1007/bf00968788. PMID1603265.
“Regulation of apoptosis by a prostate-specific and prostate cancer-associated noncoding gene, PCGEM1”. DNA and Cell Biology25 (3): 135–141. (March 2006). doi:10.1089/dna.2006.25.135. PMID16569192.
“A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas”. Oncogene26 (6): 851–858. (February 2007). doi:10.1038/sj.onc.1209846. PMID16878148.
“Antisense intronic non-coding RNA levels correlate to the degree of tumor differentiation in prostate cancer”. Oncogene23 (39): 6684–6692. (August 2004). doi:10.1038/sj.onc.1207880. PMID15221013.
“Identification and regulation of the long non-coding RNA Heat2 in heart failure”. Journal of Molecular and Cellular Cardiology126: 13–22. (January 2019). doi:10.1016/j.yjmcc.2018.11.004. PMID30445017.
“Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction”. Journal of Human Genetics51 (12): 1087–1099. (2006). doi:10.1007/s10038-006-0070-9. PMID17066261.
“Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF”. Cancer Research67 (8): 3963–3969. (April 2007). doi:10.1158/0008-5472.CAN-06-2004. PMID17440112.
“Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p”. Human Molecular Genetics17 (6): 806–814. (March 2008). doi:10.1093/hmg/ddm352. PMID18048406.
“Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus”. Arteriosclerosis, Thrombosis, and Vascular Biology29 (10): 1671–1677. (October 2009). doi:10.1161/ATVBAHA.109.189522. PMID19592466.
“SNPs in the promoter of a B cell-specific antisense transcript, SAS-ZFAT, determine susceptibility to autoimmune thyroid disease”. Human Molecular Genetics13 (19): 2221–2231. (October 2004). doi:10.1093/hmg/ddh245. PMID15294872.
“Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease”. Nature Genetics34 (2): 157–165. (June 2003). doi:10.1038/ng1157. PMID12730694.
“Long noncoding RNAs are involved in multiple immunological pathways in response to vaccination”. Proceedings of the National Academy of Sciences of the United States of America116 (34): 17121–17126. (August 2019). doi:10.1073/pnas.1822046116. PMID31399544.
“Expression of enhanced levels of small RNA polymerase III transcripts encoded by the B2 repeats in simian virus 40-transformed mouse cells”. Nature314 (6011): 553–556. (1985). Bibcode: 1985Natur.314..553S. doi:10.1038/314553a0. PMID2581137.
“Visiting "noncodarnia"”. BioTechniques54 (6): 301, 303–4. (June 2013). doi:10.2144/000114037. PMID23750541. ""We're calling long noncoding RNAs a class, when actually the only definition is that they are longer than 200 bp," says Ana Marques, a Research Fellow at the University of Oxford who uses evolutionary approaches to understand lncRNA function."
“Characterization and identification of long non-coding RNAs based on feature relationship”. Bioinformatics41 (Database issue): D246–D251. (January 2019). doi:10.1093/bioinformatics/btz008. PMID30649200.
“Pattern recognition analysis on long noncoding RNAs: a tool for prediction in plants”. Briefings in Bioinformatics20 (2): 682–689. (2019). doi:10.1093/bib/bby034. PMID29697740.
“Evolution to the rescue: using comparative genomics to understand long non-coding RNAs”. Nature Reviews Genetics17 (10): 601–614. (October 2016). doi:10.1038/nrg.2016.85. PMID27573374.
“Pervasive transcription of the eukaryotic genome: functional indices and conceptual implications”. Briefings in Functional Genomics & Proteomics8 (6): 407–423. (November 2009). doi:10.1093/bfgp/elp038. PMID19770204.
“Cloning of the mRNA of overexpression in colon carcinoma-1: a sequence overexpressed in a subset of colon carcinomas”. Cancer Genetics and Cytogenetics133 (1): 55–60. (February 2002). doi:10.1016/S0165-4608(01)00634-3. PMID11890990.
“Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas”. Cancer Cell12 (3): 215–229. (September 2007). doi:10.1016/j.ccr.2007.07.027. PMID17785203.
“Divergent lncRNAs Regulate Gene Expression and Lineage Differentiation in Pluripotent Cells”. Cell Stem Cell18 (5): 637–652. (May 2016). doi:10.1016/j.stem.2016.01.024. PMID26996597.
“Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript”. Nature445 (7128): 666–670. (February 2007). doi:10.1038/nature05519. PMID17237763.
“Inhibition of P-TEFb (CDK9/Cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA”. Molecular Cell12 (4): 971–982. (October 2003). doi:10.1016/S1097-2765(03)00388-5. PMID14580347.
“Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock”. Molecular Cell29 (4): 499–509. (February 2008). doi:10.1016/j.molcel.2007.12.013. PMID18313387.
“Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms”. BioEssays25 (10): 930–939. (October 2003). doi:10.1002/bies.10332. PMID14505360.
“Chromosomal silencing and localization are mediated by different domains of Xist RNA”. Nature Genetics30 (2): 167–174. (February 2002). doi:10.1038/ng820. PMID11780141.
“Identification of new Xlsirt family members in the Xenopus laevis oocyte”. Mechanisms of Development120 (4): 503–509. (April 2003). doi:10.1016/S0925-4773(02)00459-8. PMID12676327.
“Expression of enhanced levels of small RNA polymerase III transcripts encoded by the B2 repeats in simian virus 40-transformed mouse cells”. Nature314 (6011): 553–556. (1985). Bibcode: 1985Natur.314..553S. doi:10.1038/314553a0. PMID2581137.
“Increased level of polymerase III transcribed Alu RNA in hepatocellular carcinoma tissue”. Molecular Carcinogenesis42 (2): 93–96. (February 2005). doi:10.1002/mc.20057. PMID15593371.
“LIT1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids”. Human Molecular Genetics8 (7): 1209–1217. (July 1999). doi:10.1093/hmg/8.7.1209. PMID10369866.
“Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes”. Nature Genetics36 (12): 1296–1300. (December 2004). doi:10.1038/ng1467. PMID15516932.
“BC200 RNA in normal human neocortex, non-Alzheimer dementia (NAD), and senile dementia of the Alzheimer type (AD)”. Neurochemical Research17 (6): 591–597. (June 1992). doi:10.1007/bf00968788. PMID1603265.
“Regulation of apoptosis by a prostate-specific and prostate cancer-associated noncoding gene, PCGEM1”. DNA and Cell Biology25 (3): 135–141. (March 2006). doi:10.1089/dna.2006.25.135. PMID16569192.
“A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas”. Oncogene26 (6): 851–858. (February 2007). doi:10.1038/sj.onc.1209846. PMID16878148.
“Antisense intronic non-coding RNA levels correlate to the degree of tumor differentiation in prostate cancer”. Oncogene23 (39): 6684–6692. (August 2004). doi:10.1038/sj.onc.1207880. PMID15221013.
“Identification and regulation of the long non-coding RNA Heat2 in heart failure”. Journal of Molecular and Cellular Cardiology126: 13–22. (January 2019). doi:10.1016/j.yjmcc.2018.11.004. PMID30445017.
“Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction”. Journal of Human Genetics51 (12): 1087–1099. (2006). doi:10.1007/s10038-006-0070-9. PMID17066261.
“Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF”. Cancer Research67 (8): 3963–3969. (April 2007). doi:10.1158/0008-5472.CAN-06-2004. PMID17440112.
“Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p”. Human Molecular Genetics17 (6): 806–814. (March 2008). doi:10.1093/hmg/ddm352. PMID18048406.
“Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus”. Arteriosclerosis, Thrombosis, and Vascular Biology29 (10): 1671–1677. (October 2009). doi:10.1161/ATVBAHA.109.189522. PMID19592466.
“SNPs in the promoter of a B cell-specific antisense transcript, SAS-ZFAT, determine susceptibility to autoimmune thyroid disease”. Human Molecular Genetics13 (19): 2221–2231. (October 2004). doi:10.1093/hmg/ddh245. PMID15294872.
“Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease”. Nature Genetics34 (2): 157–165. (June 2003). doi:10.1038/ng1157. PMID12730694.
“Long noncoding RNAs are involved in multiple immunological pathways in response to vaccination”. Proceedings of the National Academy of Sciences of the United States of America116 (34): 17121–17126. (August 2019). doi:10.1073/pnas.1822046116. PMID31399544.