Gowers 2002, 118쪽 괄호 없는 하버드 인용 error: 대상 없음: CITEREFGowers2002 (help) "The seemingly arbitrary exclusion of 1 from the definition of a prime … does not express some deep fact about numbers: it just happens to be a useful convention, adopted so there is only one way of factorizing any given number into primes." For a more detailed discussion, see Caldwell & Xiong (2012) harvtxt error: 대상 없음: CITEREFCaldwellXiong2012 (help). Gowers, Timothy (2002), 《Mathematics: A Very Short Introduction》, Oxford University Press, ISBN978-0-19-285361-5 Caldwell, Chris K.; Xiong, Yeng (2012년 12월 27일), “What is the Smallest Prime?”, 《Journal of Integer Sequences》 15 (9), arXiv:1209.2007, Bibcode:2012arXiv1209.2007C
books.google.com
Arnold 1919, 21쪽 괄호 없는 하버드 인용 error: 대상 없음: CITEREFArnold1919 (help) "By the same test zero surpasses all numbers in 'evenness.'"; Wong 1997, 479쪽 괄호 없는 하버드 인용 error: 대상 없음: CITEREFWong1997 (help) "Thus, the integer b000⋯000 = 0 is the most 'even.' Arnold, C. L. (January 1919), “The Number Zero”, 《The Ohio Educational Monthly》 68 (1): 21–22, 2010년 4월 11일에 확인함 Wong, Samuel Shaw Ming (1997), 《Computational Methods in Physics and Engineering》, World Scientific, ISBN978-981-02-3043-2
Compare Lichtenberg (1972, 535쪽) harvtxt error: 대상 없음: CITEREFLichtenberg1972 (help) Fig. 1 Lichtenberg, Betty Plunkett (November 1972), “Zero is an even number”, 《The Arithmetic Teacher》 19 (7): 535–538, doi:10.5951/AT.19.7.0535
Lichtenberg 1972, 535–536쪽 괄호 없는 하버드 인용 error: 대상 없음: CITEREFLichtenberg1972 (help) "...numbers answer the question How many? for the set of objects ... zero is the number property of the empty set ... If the elements of each set are marked off in groups of two ... then the number of that set is an even number." Lichtenberg, Betty Plunkett (November 1972), “Zero is an even number”, 《The Arithmetic Teacher》 19 (7): 535–538, doi:10.5951/AT.19.7.0535
Lichtenberg 1972, 535–536쪽 괄호 없는 하버드 인용 error: 대상 없음: CITEREFLichtenberg1972 (help) "Zero groups of two stars are circled. No stars are left. Therefore, zero is an even number." Lichtenberg, Betty Plunkett (November 1972), “Zero is an even number”, 《The Arithmetic Teacher》 19 (7): 535–538, doi:10.5951/AT.19.7.0535
Lichtenberg 1972, 537쪽 괄호 없는 하버드 인용 error: 대상 없음: CITEREFLichtenberg1972 (help); compare her Fig. 3. "If the even numbers are identified in some special way ... there is no reason at all to omit zero from the pattern." Lichtenberg, Betty Plunkett (November 1972), “Zero is an even number”, 《The Arithmetic Teacher》 19 (7): 535–538, doi:10.5951/AT.19.7.0535
Lichtenberg 1972, 537–538쪽 괄호 없는 하버드 인용 error: 대상 없음: CITEREFLichtenberg1972 (help) "At a more advanced level ... numbers expressed as (2 × ▢) + 0 are even numbers ... zero fits nicely into this pattern." Lichtenberg, Betty Plunkett (November 1972), “Zero is an even number”, 《The Arithmetic Teacher》 19 (7): 535–538, doi:10.5951/AT.19.7.0535
Nuerk, Iversen & Willmes (2004, 851쪽) harvtxt error: 대상 없음: CITEREFNuerkIversenWillmes2004 (help): "It can also be seen that zero strongly differs from all other numbers regardless of whether it is responded to with the left or the right hand. (See the line that separates zero from the other numbers.)" Nuerk, Hans-Christoph; Iversen, Wiebke; Willmes, Klaus (July 2004), “Notational modulation of the SNARC and the MARC (linguistic markedness of response codes) effect”, 《The Quarterly Journal of Experimental Psychology A》 57 (5): 835–863, doi:10.1080/02724980343000512, PMID15204120, S2CID10672272
Gowers 2002, 118쪽 괄호 없는 하버드 인용 error: 대상 없음: CITEREFGowers2002 (help) "The seemingly arbitrary exclusion of 1 from the definition of a prime … does not express some deep fact about numbers: it just happens to be a useful convention, adopted so there is only one way of factorizing any given number into primes." For a more detailed discussion, see Caldwell & Xiong (2012) harvtxt error: 대상 없음: CITEREFCaldwellXiong2012 (help). Gowers, Timothy (2002), 《Mathematics: A Very Short Introduction》, Oxford University Press, ISBN978-0-19-285361-5 Caldwell, Chris K.; Xiong, Yeng (2012년 12월 27일), “What is the Smallest Prime?”, 《Journal of Integer Sequences》 15 (9), arXiv:1209.2007, Bibcode:2012arXiv1209.2007C
nih.gov
ncbi.nlm.nih.gov
Nuerk, Iversen & Willmes (2004, 851쪽) harvtxt error: 대상 없음: CITEREFNuerkIversenWillmes2004 (help): "It can also be seen that zero strongly differs from all other numbers regardless of whether it is responded to with the left or the right hand. (See the line that separates zero from the other numbers.)" Nuerk, Hans-Christoph; Iversen, Wiebke; Willmes, Klaus (July 2004), “Notational modulation of the SNARC and the MARC (linguistic markedness of response codes) effect”, 《The Quarterly Journal of Experimental Psychology A》 57 (5): 835–863, doi:10.1080/02724980343000512, PMID15204120, S2CID10672272
Nuerk, Iversen & Willmes (2004, 851쪽) harvtxt error: 대상 없음: CITEREFNuerkIversenWillmes2004 (help): "It can also be seen that zero strongly differs from all other numbers regardless of whether it is responded to with the left or the right hand. (See the line that separates zero from the other numbers.)" Nuerk, Hans-Christoph; Iversen, Wiebke; Willmes, Klaus (July 2004), “Notational modulation of the SNARC and the MARC (linguistic markedness of response codes) effect”, 《The Quarterly Journal of Experimental Psychology A》 57 (5): 835–863, doi:10.1080/02724980343000512, PMID15204120, S2CID10672272
Ball, Lewis & Thames (2008, 15쪽) harvtxt error: 대상 없음: CITEREFBallLewisThames2008 (help) discuss this challenge for the elementary-grades teacher, who wants to give mathematical reasons for mathematical facts, but whose students neither use the same definition, nor would understand it if it were introduced. Ball, Deborah Loewenberg; Lewis, Jennifer; Thames, Mark Hoover (2008), “Making mathematics work in school”(PDF), 《Journal for Research in Mathematics Education》 M14: 13–44 and 195–200, 2010년 3월 4일에 확인함
Gowers 2002, 118쪽 괄호 없는 하버드 인용 error: 대상 없음: CITEREFGowers2002 (help) "The seemingly arbitrary exclusion of 1 from the definition of a prime … does not express some deep fact about numbers: it just happens to be a useful convention, adopted so there is only one way of factorizing any given number into primes." For a more detailed discussion, see Caldwell & Xiong (2012) harvtxt error: 대상 없음: CITEREFCaldwellXiong2012 (help). Gowers, Timothy (2002), 《Mathematics: A Very Short Introduction》, Oxford University Press, ISBN978-0-19-285361-5 Caldwell, Chris K.; Xiong, Yeng (2012년 12월 27일), “What is the Smallest Prime?”, 《Journal of Integer Sequences》 15 (9), arXiv:1209.2007, Bibcode:2012arXiv1209.2007C
Arnold 1919, 21쪽 괄호 없는 하버드 인용 error: 대상 없음: CITEREFArnold1919 (help) "By the same test zero surpasses all numbers in 'evenness.'"; Wong 1997, 479쪽 괄호 없는 하버드 인용 error: 대상 없음: CITEREFWong1997 (help) "Thus, the integer b000⋯000 = 0 is the most 'even.' Arnold, C. L. (January 1919), “The Number Zero”, 《The Ohio Educational Monthly》 68 (1): 21–22, 2010년 4월 11일에 확인함 Wong, Samuel Shaw Ming (1997), 《Computational Methods in Physics and Engineering》, World Scientific, ISBN978-981-02-3043-2
Ball, Lewis & Thames (2008, 15쪽) harvtxt error: 대상 없음: CITEREFBallLewisThames2008 (help) discuss this challenge for the elementary-grades teacher, who wants to give mathematical reasons for mathematical facts, but whose students neither use the same definition, nor would understand it if it were introduced. Ball, Deborah Loewenberg; Lewis, Jennifer; Thames, Mark Hoover (2008), “Making mathematics work in school”(PDF), 《Journal for Research in Mathematics Education》 M14: 13–44 and 195–200, 2010년 3월 4일에 확인함
Compare Lichtenberg (1972, 535쪽) harvtxt error: 대상 없음: CITEREFLichtenberg1972 (help) Fig. 1 Lichtenberg, Betty Plunkett (November 1972), “Zero is an even number”, 《The Arithmetic Teacher》 19 (7): 535–538, doi:10.5951/AT.19.7.0535
Lichtenberg 1972, 535–536쪽 괄호 없는 하버드 인용 error: 대상 없음: CITEREFLichtenberg1972 (help) "...numbers answer the question How many? for the set of objects ... zero is the number property of the empty set ... If the elements of each set are marked off in groups of two ... then the number of that set is an even number." Lichtenberg, Betty Plunkett (November 1972), “Zero is an even number”, 《The Arithmetic Teacher》 19 (7): 535–538, doi:10.5951/AT.19.7.0535
Lichtenberg 1972, 535–536쪽 괄호 없는 하버드 인용 error: 대상 없음: CITEREFLichtenberg1972 (help) "Zero groups of two stars are circled. No stars are left. Therefore, zero is an even number." Lichtenberg, Betty Plunkett (November 1972), “Zero is an even number”, 《The Arithmetic Teacher》 19 (7): 535–538, doi:10.5951/AT.19.7.0535
Lichtenberg 1972, 537쪽 괄호 없는 하버드 인용 error: 대상 없음: CITEREFLichtenberg1972 (help); compare her Fig. 3. "If the even numbers are identified in some special way ... there is no reason at all to omit zero from the pattern." Lichtenberg, Betty Plunkett (November 1972), “Zero is an even number”, 《The Arithmetic Teacher》 19 (7): 535–538, doi:10.5951/AT.19.7.0535
Lichtenberg 1972, 537–538쪽 괄호 없는 하버드 인용 error: 대상 없음: CITEREFLichtenberg1972 (help) "At a more advanced level ... numbers expressed as (2 × ▢) + 0 are even numbers ... zero fits nicely into this pattern." Lichtenberg, Betty Plunkett (November 1972), “Zero is an even number”, 《The Arithmetic Teacher》 19 (7): 535–538, doi:10.5951/AT.19.7.0535
Gowers 2002, 118쪽 괄호 없는 하버드 인용 error: 대상 없음: CITEREFGowers2002 (help) "The seemingly arbitrary exclusion of 1 from the definition of a prime … does not express some deep fact about numbers: it just happens to be a useful convention, adopted so there is only one way of factorizing any given number into primes." For a more detailed discussion, see Caldwell & Xiong (2012) harvtxt error: 대상 없음: CITEREFCaldwellXiong2012 (help). Gowers, Timothy (2002), 《Mathematics: A Very Short Introduction》, Oxford University Press, ISBN978-0-19-285361-5 Caldwell, Chris K.; Xiong, Yeng (2012년 12월 27일), “What is the Smallest Prime?”, 《Journal of Integer Sequences》 15 (9), arXiv:1209.2007, Bibcode:2012arXiv1209.2007C
Partee 1978, xxi쪽 괄호 없는 하버드 인용 error: 대상 없음: CITEREFPartee1978 (help) Partee, Barbara Hall (1978), 《Fundamentals of Mathematics for Linguistics》, Dordrecht: D. Reidel, ISBN978-90-277-0809-0
Stewart 2001, 54쪽 괄호 없는 하버드 인용 error: 대상 없음: CITEREFStewart2001 (help) These rules are given, but they are not quoted verbatim. Stewart, Mark Alan (2001), 《30 Days to the GMAT CAT》, Stamford: Thomson, ISBN978-0-7689-0635-6
Devlin 1985, 30–33쪽 괄호 없는 하버드 인용 error: 대상 없음: CITEREFDevlin1985 (help) Devlin, Keith (April 1985), “The golden age of mathematics”, 《New Scientist》 106 (1452)
Berlinghoff, Grant & Skrien 2001 괄호 없는 하버드 인용 error: 대상 없음: CITEREFBerlinghoffGrantSkrien2001 (help) For isolated vertices see p. 149; for groups see p. 311. Berlinghoff, William P.; Grant, Kerry E.; Skrien, Dale (2001), 《A Mathematics Sampler: Topics for the Liberal Arts》 5 rev.판, Rowman & Littlefield, ISBN978-0-7425-0202-4
Bunch 1982, 165쪽 괄호 없는 하버드 인용 error: 대상 없음: CITEREFBunch1982 (help) Bunch, Bryan H. (1982), 《Mathematical Fallacies and Paradoxes》, Van Nostrand Reinhold, ISBN978-0-442-24905-2
Wise 2002, 66–67쪽 괄호 없는 하버드 인용 error: 대상 없음: CITEREFWise2002 (help) Wise, Stephen (2002), 《GIS Basics》, CRC Press, ISBN978-0-415-24651-4
Nuerk, Iversen & Willmes (2004, 851쪽) harvtxt error: 대상 없음: CITEREFNuerkIversenWillmes2004 (help): "It can also be seen that zero strongly differs from all other numbers regardless of whether it is responded to with the left or the right hand. (See the line that separates zero from the other numbers.)" Nuerk, Hans-Christoph; Iversen, Wiebke; Willmes, Klaus (July 2004), “Notational modulation of the SNARC and the MARC (linguistic markedness of response codes) effect”, 《The Quarterly Journal of Experimental Psychology A》 57 (5): 835–863, doi:10.1080/02724980343000512, PMID15204120, S2CID10672272