시계열 데이터베이스 (Korean Wikipedia)

Analysis of information sources in references of the Wikipedia article "시계열 데이터베이스" in Korean language version.

refsWebsite
Global rank Korean rank
383rd place
118th place
2nd place
3rd place
1st place
1st place
102nd place
307th place
1,553rd place
1,049th place
4,491st place
2,981st place
low place
7,622nd place
low place
low place
low place
low place
786th place
604th place
1,131st place
319th place
1,185th place
449th place
low place
low place

acm.org

queue.acm.org

db-engines.com

doi.org

dx.doi.org

  • Villar-Rodriguez, Esther; Del Ser, Javier; Oregi, Izaskun; Bilbao, Miren Nekane; Gil-Lopez, Sergio (2017). “Detection of non-technical losses in smart meter data based on load curve profiling and time series analysis”. 《Energy》 137: 118–128. doi:10.1016/j.energy.2017.07.008. hdl:20.500.11824/693. 
  • Pelkonen, Tuomas; Franklin, Scott; Teller, Justin; Cavallaro, Paul; Huang, Qi; Meza, Justin; Veeraraghavan, Kaushik (2015). “Gorilla”. 《Proceedings of the VLDB Endowment》 8 (12): 1816–1827. doi:10.14778/2824032.2824078. 
  • Slabber, Martin; Joubert, Francois; Ockards, Muhammed Toufeeq (2018). “Scalable Time Series Documents Store”. 《Proceedings of the 16Th Int. Conf. On Accelerator and Large Experimental Control Systems》. ICALEPCS2017. doi:10.18429/JACoW-ICALEPCS2017-TUBPA06. 

github.com

handle.net

hdl.handle.net

  • Villar-Rodriguez, Esther; Del Ser, Javier; Oregi, Izaskun; Bilbao, Miren Nekane; Gil-Lopez, Sergio (2017). “Detection of non-technical losses in smart meter data based on load curve profiling and time series analysis”. 《Energy》 137: 118–128. doi:10.1016/j.energy.2017.07.008. hdl:20.500.11824/693. 
  • Joshi, Nishes (2012년 5월 23일). 《Interoperability in monitoring and reporting systems》 (Thesis). hdl:10852/9085. 

ibm.com

redbooks.ibm.com

influxdata.com

redmonk.com

techrepublic.com

  • Asay, Matt (26 June 2019). “Why time series databases are exploding in popularity”. 《TechRepublic》. 26 June 2019에 원본 문서에서 보존된 문서. 31 July 2019에 확인함. Relational databases and NoSQL databases can be used for time series data, but arguably developers will get better performance from purpose-built time series databases, rather than trying to apply a one-size-fits-all database to specific workloads. 

ucr.edu

cs.ucr.edu

web.archive.org

zdnet.com

zhaw.ch

blog.zhaw.ch