Analysis of information sources in references of the Wikipedia article "초대질량 블랙홀" in Korean language version.
State-of-the-art computer simulations show that the first supermassive black holes were born in rare, turbulent reservoirs of gas in the primordial Universe without the need for finely tuned, exotic environments — contrary to what has been thought for almost two decades.
p. 596: table 1 and section "black hole decay" and previous sentence on that page: "Since we have assumed a maximum scale of gravitational binding – for instance, superclusters of galaxies – black hole formation eventually comes to an end in our model, with masses of up to 1014 틀:Solar mass ... the timescale for black holes to radiate away all their energy ranges ... to 10106 years for black holes of up to 1014 틀:Solar mass
p. 596: table 1 and section "black hole decay" and previous sentence on that page: "Since we have assumed a maximum scale of gravitational binding – for instance, superclusters of galaxies – black hole formation eventually comes to an end in our model, with masses of up to 1014 틀:Solar mass ... the timescale for black holes to radiate away all their energy ranges ... to 10106 years for black holes of up to 1014 틀:Solar mass
'This black hole grew far larger than we expected in only 690 million years after the Big Bang, which challenges our theories about how black holes form,' said study co-author Daniel Stern of NASA's Jet Propulsion Laboratory in Pasadena, California.
It had reached its size just 690 million years after the point beyond which there is nothing. The most dominant scientific theory of recent years describes that point as the Big Bang—a spontaneous eruption of reality as we know it out of a quantum singularity. But another idea has recently been gaining weight: that the universe goes through periodic expansions and contractions—resulting in a 'Big Bounce'. And the existence of early black holes has been predicted to be a key telltale as to whether or not the idea may be valid. This one is very big. To get to its size—800 million times more mass than our Sun—it must have swallowed a lot of stuff. ... As far as we understand it, the universe simply wasn't old enough at that time to generate such a monster.
State-of-the-art computer simulations show that the first supermassive black holes were born in rare, turbulent reservoirs of gas in the primordial Universe without the need for finely tuned, exotic environments — contrary to what has been thought for almost two decades.
p. 596: table 1 and section "black hole decay" and previous sentence on that page: "Since we have assumed a maximum scale of gravitational binding – for instance, superclusters of galaxies – black hole formation eventually comes to an end in our model, with masses of up to 1014 틀:Solar mass ... the timescale for black holes to radiate away all their energy ranges ... to 10106 years for black holes of up to 1014 틀:Solar mass
The presence of such a massive black hole so early in the universe's history challenges theories of black hole formation. As lead author [Feige] Wang, now a NASA Hubble fellow at the University of Arizona, explains: 'Black holes created by the very first massive stars could not have grown this large in only a few hundred million years.'
p. 596: table 1 and section "black hole decay" and previous sentence on that page: "Since we have assumed a maximum scale of gravitational binding – for instance, superclusters of galaxies – black hole formation eventually comes to an end in our model, with masses of up to 1014 틀:Solar mass ... the timescale for black holes to radiate away all their energy ranges ... to 10106 years for black holes of up to 1014 틀:Solar mass
This new theory that accepts that the Universe is going through periodic expansions and contractions is called 'Big Bounce'