Manuel Gaudon. (2015). Out-of-centre distortions around an octahedrally coordinated Ti4+ in BaTiO3Polyhedron. 88pag.: 6–10DOI:10.1016/j.poly.2014.12.004
O.L.G. Alderman, C. Benmore, J. Neuefeind, A. Tamalonis, R. Weber. (2019). Molten barium titanate: a high-pressure liquid silicate analogueJournal of Physics: Condensed Matter. 31 (20): pag.: 20LT01DOI:10.1088/1361-648X/ab0939 PubMed: 30790768
Edward K. Nyutu, Chun-Hu Chen, Prabir K. Dutta, Steven L. Suib. (2008). Effect of Microwave Frequency on Hydrothermal Synthesis of Nanocrystalline Tetragonal Barium TitanateThe Journal of Physical Chemistry C. 112pag.: 9659DOI:10.1021/jp7112818
T. Jaglinski, D. Kochmann, D. Stone, R.S. Lakes. (2007). Composite materials with viscoelastic stiffness greater than diamondScience. 315 (5812): pag.: 620–622DOI:10.1126/science.1135837 PubMed: 17272714
Keigo Suzuki, Kazunori Kijima. (2005). Optical Band Gap of Barium Titanate Nanoparticles Prepared by RF-plasma Chemical Vapor DepositionJpn. J. Appl. Phys.. 44 (4A): pag.: 2081–2082DOI:10.1143/JJAP.44.2081
J.F. Scott, A. Schilling, S.E. Rowley, J.M. Gregg. (2015). Some current problems in perovskite nano-ferroelectrics and multiferroics: Kinetically-limited systems of finite lateral sizeScience and Technology of Advanced Materials. 16 (3): pag.: 036001DOI:10.1088/1468-6996/16/3/036001 PubMed: 27877812
G.G. Genchi, A. Marino, A. Rocca, V. Mattoli, G. Ciofani. (2016). Barium titanate nanoparticles: Promising multitasking vectors in nanomedicineNanotechnology. 27 (23): pag.: 232001DOI:10.1088/0957-4484/27/23/232001 PubMed: 27145888
W. Eerenstein, N. D. Mathur, J.F. Scott. (2006). Multiferroic and magnetoelectric materialsNature. 442 (7104): pag.: 759–765DOI:10.1038/nature05023 PubMed: 16915279
Mohsin Rafique. (2017). Giant room temperature magnetoelectric response in strain controlled nanocompositesApplied Physics Letters. 110 (20): pag.: 202902DOI:10.1063/1.4983357
Chi Ma, George R. Rossman. (2008). Barioperovskite, BaTiO3, a new mineral from the Benitoite Mine, CaliforniaAmerican Mineralogist. 93 (1): pag.: 154–157DOI:doi=10.2138/am.2008.2636
nih.gov
ncbi.nlm.nih.gov
O.L.G. Alderman, C. Benmore, J. Neuefeind, A. Tamalonis, R. Weber. (2019). Molten barium titanate: a high-pressure liquid silicate analogueJournal of Physics: Condensed Matter. 31 (20): pag.: 20LT01DOI:10.1088/1361-648X/ab0939 PubMed: 30790768
T. Jaglinski, D. Kochmann, D. Stone, R.S. Lakes. (2007). Composite materials with viscoelastic stiffness greater than diamondScience. 315 (5812): pag.: 620–622DOI:10.1126/science.1135837 PubMed: 17272714
J.F. Scott, A. Schilling, S.E. Rowley, J.M. Gregg. (2015). Some current problems in perovskite nano-ferroelectrics and multiferroics: Kinetically-limited systems of finite lateral sizeScience and Technology of Advanced Materials. 16 (3): pag.: 036001DOI:10.1088/1468-6996/16/3/036001 PubMed: 27877812
G.G. Genchi, A. Marino, A. Rocca, V. Mattoli, G. Ciofani. (2016). Barium titanate nanoparticles: Promising multitasking vectors in nanomedicineNanotechnology. 27 (23): pag.: 232001DOI:10.1088/0957-4484/27/23/232001 PubMed: 27145888
W. Eerenstein, N. D. Mathur, J.F. Scott. (2006). Multiferroic and magnetoelectric materialsNature. 442 (7104): pag.: 759–765DOI:10.1038/nature05023 PubMed: 16915279