(en) Rowat AC, Lammerding J, Herrmann H, Aebi U. (2008). Towards an integrated understanding of the structure and mechanics of the cell nucleus. Bioessays30 (3): 226–236. PMID18293361. DOI: 10.1002/bies.20720.
(en) Rippe, K. (2007). Dynamic organization of the cell nucleus. Current Opinion in Genetics & Development17 (5): 373-380. DOI: 10.1016/j.gde.2007.08.007.
(en) Clegg JS (1984). Properties and metabolism of the aqueous cytoplasm and its boundaries. The American Journal of Physiology246 (2 Pt 2): R133-51. PMID6364846. DOI: 10.1152/ajpregu.1984.246.2.R133.
(en) Mans BJ, Anantharaman V, Aravind L, Koonin EV (2004). Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. Cell Cycle3 (12): 1612–37. PMID15611647. DOI: 10.4161/cc.3.12.1316.
(en) Goldman RD, Gruenbaum Y, Moir RD, Shumaker DK, Spann TP (2002). Nuclear lamins: building blocks of nuclear architecture. Genes & Development16 (5): 533–47. PMID11877373. DOI: 10.1101/gad.960502.
(en) Stuurman N, Heins S, Aebi U (1998). Nuclear lamins: their structure, assembly, and interactions. Journal of Structural Biology122 (1-2): 42–66. PMID9724605. DOI: 10.1006/jsbi.1998.3987.
(en) Mounkes LC, Stewart CL (2004). Aging and nuclear organization: lamins and progeria. Current Opinion in Cell Biology16 (3): 322–7. PMID15145358. DOI: 10.1016/j.ceb.2004.03.009.
(en) Schermelleh L, Carlton PM, Haase S (2008). Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science (journal)320 (5881): 1332–6. PMID18535242. DOI: 10.1126/science.1156947.
(en) Grigoryev SA, Bulynko YA, Popova EY (2006). The end adjusts the means: heterochromatin remodelling during terminal cell differentiation. Chromosome Research14 (1): 53–69. PMID16506096. DOI: 10.1007/s10577-005-1021-6.
(en) Hernandez-Verdun D (2006). Nucleolus: from structure to dynamics. Histochemistry and Cell Biology125 (1-2): 127–37. PMID16328431. DOI: 10.1007/s00418-005-0046-4.
(en) Lafarga M, Berciano MT, Pena E. (2002). Clastosome: a subtype of nuclear body enriched in 19S and 20S proteasomes, ubiquitin, and protein substrates of proteasome. Molecular Biology of the Cell13 (8): 2771–82. PMID12181345. PMC117941. DOI: 10.1091/mbc.e02-03-0122.
(en) Sampuda KM, Riley M, Boyd L (2017). Stress induced nuclear granules form in response to accumulation of misfolded proteins in Caenorhabditis elegans. BMC Cell Biology18 (1): 18. PMID28424053. PMC5395811. DOI: 10.1186/s12860-017-0136-x.
(en) Niall M. Adams & Paul S. Freemont (eds.) (2010). Advances in Nuclear Architecture. Springer Science & Business Media. DOI:10.1007/978-90-481-9899-3_1, "Nuclear Subdomains and Cancer". ISBN 9789048198993.
(en) Gagliardi D, Dziembowski A. (2018). 5′ and 3′ modifications controlling RNA degradation: from safeguards to executioners. Philos Trans R Soc Lond B Biol Sci.373 (1762): 20180160. PMID30397097. DOI: 10.1098/rstb.2018.0160.
(en) Lippincott-Schwartz, J. (2002). Cell biology: ripping up the nuclear envelope. Nature416 (6876): 31–2. PMID11882878. DOI: 10.1038/416031a.
(en) Bruusgaard JC, Liestøl K, Ekmark M, Kollstad K & Gundersen K. (2003). Number and spatial distribution of nuclei in the muscle fibres of normal mice studied in vivo. The Journal of physiology551 (2): 467–478. PMID12813146. DOI: 10.1113/jphysiol.2003.045328. Vrije toegang
(en) Gregory T.R. (2001). The Bigger the C-Value, the Larger the Cell: Genome Size and Red Blood Cell Size in Vertebrates. Blood Cells, Molecules and Diseases27 (5): 830–843. PMID11783946. DOI: 10.1006/bcmd.2001.0457.
(en) Hutter KJ, Stöhr M (1982). Rapid detection of mutagen induced micronucleated erythrocytes by flow cytometry. Histochemistry75 (3): 353–62. PMID7141888. DOI: 10.1007/bf00496738.
(en) Imanian B, Pombert JF, Dorrell RG, Burki F, Keeling PJ (2012). Tertiary endosymbiosis in two dinotoms has generated little change in the mitochondrial genomes of their dinoflagellate hosts and diatom endosymbionts. PLOS ONE7 (8): e43763. PMID22916303. PMC3423374. DOI: 10.1371/journal.pone.0043763. Vrije toegang
(en) Mine, I.; Menzel, D.; Okuda, K. (2008). Morphogenesis in giant-celled algae. Int. Rev. Cell Mol. Biol. International Review of Cell and Molecular Biology 266: 37–83. DOI: 10.1016/S1937-6448(07)66002-X.
(en) LóPez-García P., Moreira D. (2001). Symbiosis. Cellular Origin, Life in Extreme Habitats and Astrobiology. Springer, Dordrecht. DOI:10.1007/0-306-48173-1_8, "The Syntrophy Hypothesis for the Origin of Eukaryotes". ISBN 978-1-4020-0189-5.
(en) Margulis L, Dolan MF, Guerrero R. (2000). The chimeric eukaryote: Origin of the nucleus from the karyomastigont in amitochondriate protists. PNAS97 (13): 6954-6959. DOI: 10.1073/pnas.97.13.6954.
(en) López-García P, Moreira D (2006). Selective forces for the origin of the eukaryotic nucleus. BioEssays28 (5): 525–33. PMID16615090. DOI: 10.1002/bies.20413.
(en) Rowat AC, Lammerding J, Herrmann H, Aebi U. (2008). Towards an integrated understanding of the structure and mechanics of the cell nucleus. Bioessays30 (3): 226–236. PMID18293361. DOI: 10.1002/bies.20720.
(en) Clegg JS (1984). Properties and metabolism of the aqueous cytoplasm and its boundaries. The American Journal of Physiology246 (2 Pt 2): R133-51. PMID6364846. DOI: 10.1152/ajpregu.1984.246.2.R133.
(en) Mans BJ, Anantharaman V, Aravind L, Koonin EV (2004). Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. Cell Cycle3 (12): 1612–37. PMID15611647. DOI: 10.4161/cc.3.12.1316.
(en) Goldman RD, Gruenbaum Y, Moir RD, Shumaker DK, Spann TP (2002). Nuclear lamins: building blocks of nuclear architecture. Genes & Development16 (5): 533–47. PMID11877373. DOI: 10.1101/gad.960502.
(en) Stuurman N, Heins S, Aebi U (1998). Nuclear lamins: their structure, assembly, and interactions. Journal of Structural Biology122 (1-2): 42–66. PMID9724605. DOI: 10.1006/jsbi.1998.3987.
(en) Mounkes LC, Stewart CL (2004). Aging and nuclear organization: lamins and progeria. Current Opinion in Cell Biology16 (3): 322–7. PMID15145358. DOI: 10.1016/j.ceb.2004.03.009.
(en) Schermelleh L, Carlton PM, Haase S (2008). Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science (journal)320 (5881): 1332–6. PMID18535242. DOI: 10.1126/science.1156947.
(en) Grigoryev SA, Bulynko YA, Popova EY (2006). The end adjusts the means: heterochromatin remodelling during terminal cell differentiation. Chromosome Research14 (1): 53–69. PMID16506096. DOI: 10.1007/s10577-005-1021-6.
(en) Hernandez-Verdun D (2006). Nucleolus: from structure to dynamics. Histochemistry and Cell Biology125 (1-2): 127–37. PMID16328431. DOI: 10.1007/s00418-005-0046-4.
(en) Lafarga M, Berciano MT, Pena E. (2002). Clastosome: a subtype of nuclear body enriched in 19S and 20S proteasomes, ubiquitin, and protein substrates of proteasome. Molecular Biology of the Cell13 (8): 2771–82. PMID12181345. PMC117941. DOI: 10.1091/mbc.e02-03-0122.
(en) Sampuda KM, Riley M, Boyd L (2017). Stress induced nuclear granules form in response to accumulation of misfolded proteins in Caenorhabditis elegans. BMC Cell Biology18 (1): 18. PMID28424053. PMC5395811. DOI: 10.1186/s12860-017-0136-x.
(en) Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P. (2015). Molecular biology of the Cell, 6th. Garland Science, "Chapter 9: Visualizing Cells", 529–562. ISBN 978-0815340720.Vrije toegang tot hoofdstuk.
(en) Gagliardi D, Dziembowski A. (2018). 5′ and 3′ modifications controlling RNA degradation: from safeguards to executioners. Philos Trans R Soc Lond B Biol Sci.373 (1762): 20180160. PMID30397097. DOI: 10.1098/rstb.2018.0160.
(en) Lippincott-Schwartz, J. (2002). Cell biology: ripping up the nuclear envelope. Nature416 (6876): 31–2. PMID11882878. DOI: 10.1038/416031a.
(en) Bruusgaard JC, Liestøl K, Ekmark M, Kollstad K & Gundersen K. (2003). Number and spatial distribution of nuclei in the muscle fibres of normal mice studied in vivo. The Journal of physiology551 (2): 467–478. PMID12813146. DOI: 10.1113/jphysiol.2003.045328. Vrije toegang
(en) Gregory T.R. (2001). The Bigger the C-Value, the Larger the Cell: Genome Size and Red Blood Cell Size in Vertebrates. Blood Cells, Molecules and Diseases27 (5): 830–843. PMID11783946. DOI: 10.1006/bcmd.2001.0457.
(en) Hutter KJ, Stöhr M (1982). Rapid detection of mutagen induced micronucleated erythrocytes by flow cytometry. Histochemistry75 (3): 353–62. PMID7141888. DOI: 10.1007/bf00496738.
(en) Imanian B, Pombert JF, Dorrell RG, Burki F, Keeling PJ (2012). Tertiary endosymbiosis in two dinotoms has generated little change in the mitochondrial genomes of their dinoflagellate hosts and diatom endosymbionts. PLOS ONE7 (8): e43763. PMID22916303. PMC3423374. DOI: 10.1371/journal.pone.0043763. Vrije toegang
(en) Horiike T, Hamada K, Kanaya S, Shinozawa T. (2001). Origin of eukaryotic cell nuclei by symbiosis of Archaea in Bacteria is revealed by homology-hit analysis. Nat Cell Biol.3 (2): 210–214. PMID11175755.
(en) López-García P, Moreira D (2006). Selective forces for the origin of the eukaryotic nucleus. BioEssays28 (5): 525–33. PMID16615090. DOI: 10.1002/bies.20413.
(en) Timmis, J., Ayliffe, M., Huang, C. et al. (2004). Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet5 (2): 123–135. PMID14735123. DOI: 10.1038/nrg1271.
(en) Clift D, Schuh M (2013). Restarting life: fertilization and the transition from meiosis to mitosis (Box 1). Nature Reviews Molecular Cell Biology14 (9): 549–62. PMID23942453. PMC4021448. DOI: 10.1038/nrm3643.
uni-muenchen.de
epub.ub.uni-muenchen.de
(de) Cremer, Thomas (1985). Von der Zellenlehre zur Chromosomentheorie. Springer Verlag, Berlin, Heidelberg, New York, Tokyo. ISBN 978-3-540-13987-4.Online versie
De chromosomen verkeren op dit moment in een verdubbelde toestand. De twee kopieën, die elk de helft van het gerepliceerde chromosoom vormen, worden chromatiden genoemd. Tijdens de celdeling splitsen ze in tegenovergestelde richting uiteen. Zie deze figuur.