Kong D, Li Y, Wang Z, Sarkar FH (February 2011). Cancer Stem Cells and Epithelial-to-Mesenchymal Transition (EMT)-Phenotypic Cells: Are They Cousins or Twins?. Cancers3 (1): 716–29. PMID21643534. PMC3106306. DOI: 10.3390/cancers30100716.
Sciacovelli M, Frezza C (October 2017). Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer. The FEBS Journal284 (19): 3132–3144. PMID28444969. PMC6049610. DOI: 10.1111/febs.14090.
Li L, Li W (June 2015). Epithelial-mesenchymal transition in human cancer: comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacology & Therapeutics150: 33–46. PMID25595324. DOI: 10.1016/j.pharmthera.2015.01.004.
Peinado H, Olmeda D, Cano A (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?. Nature Reviews Cancer7 (6): 415–428. PMID17508028. DOI: 10.1038/nrc2131.
Yang J, Weinberg RA (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell14 (6): 818–829. PMID18539112. DOI: 10.1016/j.devcel.2008.05.009.
De Craene B, Berx G (2013). Regulatory networks defining EMT during cancer initiation and progression. Nature Reviews Cancer13 (2): 97–110. PMID23344542. DOI: 10.1038/nrc3447.
Chakrabarti R, Hwang J, Andres Blanco M, Wei Y, Lukačišin M, Romano RA, Smalley K, Liu S, Yang Q, Ibrahim T, Mercatali L, Amadori D, Haffty BG, Sinha S, Kang Y (2012). Elf5 inhibits the epithelial-mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nat Cell Biol14 (11): 1212–1222. PMID23086238. PMC3500637. DOI: 10.1038/ncb2607.
Nouri M, Ratther E, Stylianou N, Nelson CC, Hollier BG, Williams ED (2014). Androgen-targeted therapy-induced epithelial mesenchymal plasticity and neuroendocrine transdifferentiation in prostate cancer: an opportunity for intervention. Front Oncol4: 370. PMID25566507. PMC4274903. DOI: 10.3389/fonc.2014.00370.
Zhang L, Huang G, Li X, Zhang Y, Jiang Y, Shen J, Liu J, Wang Q, Zhu J, Feng X, Dong J, Qian C (March 2013). Hypoxia induces epithelial-mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor -1α in hepatocellular carcinoma. BMC Cancer13: 108. PMID23496980. PMC3614870. DOI: 10.1186/1471-2407-13-108.
Ciruna B, Rossant J (July 2001). FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Developmental Cell1 (1): 37–49. PMID11703922. DOI: 10.1016/s1534-5807(01)00017-x.
Lu Z, Ghosh S, Wang Z, Hunter T (December 2003). Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell4 (6): 499–515. PMID14706341. DOI: 10.1016/s1535-6108(03)00304-0.
Boyer B, Tucker GC, Vallés AM, Franke WW, Thiery JP (October 1989). Rearrangements of desmosomal and cytoskeletal proteins during the transition from epithelial to fibroblastoid organization in cultured rat bladder carcinoma cells. The Journal of Cell Biology109 (4 Pt 1): 1495–509. PMID2677020. PMC2115780. DOI: 10.1083/jcb.109.4.1495.
Herfs M, Hubert P, Suarez-Carmona M, Reschner A, Saussez S, Berx G, Savagner P, Boniver J, Delvenne P (April 2010). Regulation of p63 isoforms by snail and slug transcription factors in human squamous cell carcinoma. The American Journal of Pathology176 (4): 1941–9. PMID20150431. PMC2843482. DOI: 10.2353/ajpath.2010.090804.
Larue L, Bellacosa A (November 2005). Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3' kinase/AKT pathways. Oncogene24 (50): 7443–54. PMID16288291. DOI: 10.1038/sj.onc.1209091.
Vlahopoulos SA, Logotheti S, Mikas D, Giarika A, Gorgoulis V, Zoumpourlis V (April 2008). The role of ATF-2 in oncogenesis. BioEssays30 (4): 314–27. PMID18348191. DOI: 10.1002/bies.20734.
Micalizzi DS, Farabaugh SM, Ford HL (2010). Epithelial-Mesenchymal Transition in Cancer: Parallels between Normal Development and Tumor Progression. J Mammary Gland Biol Neoplasia15 (2): 117–134. PMID20490631. PMC2886089. DOI: 10.1007/s10911-010-9178-9.
Kang Y, He W, Tulley S, Gupta GP, Serganova I, Chen CR, Manova-Todorova K, Blasberg R, Gerald WL, Massagué J (2005). Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. PNAS102 (39): 13909–14. PMID16172383. PMC1236573. DOI: 10.1073/pnas.0506517102.
Chang C, Chao C, Xia W, Yang J, Xiong Y, Li C, Yu W, Rehman SK, Hsu JL, Lee H, Liu M, Chen C, Yu D, Hung M (2011). p53 regulates epithelial-mesenchymal transition (EMT) and stem cell properties through modulating miRNAs. Nat Cell Biol13 (3): 317–323. PMID21336307. PMC3075845. DOI: 10.1038/ncb2173.
Hay ED (2005). The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev. Dyn.233 (3): 706–20. PMID15937929. DOI: 10.1002/dvdy.20345.
Kerosuo L, Bronner-Fraser M (2012). What is bad in cancer is good in the embryo: Importance of EMT in neural crest development. Seminars in Cell and Developmental Biology23 (3): 320–332. PMID22430756. PMC3345076. DOI: 10.1016/j.semcdb.2012.03.010.
Ahmed N, Maines-Bandiera S, Quinn MA, Unger WG, Dedhar S, Auersperg N (2006). Molecular pathways regulating EGF-induced epithelio- mesenchymal transition in human ovarian surface epithelium. Am J Physiol Cell Physiol290 (6): C1532–C1542. PMID16394028. DOI: 10.1152/ajpcell.00478.2005.
Jolly MK, Boareto M, Huang B, Jia D, Lu M, Ben-Jacob E, Onuchic JN, Levine H (1 januari 2015). Implications of the Hybrid Epithelial/Mesenchymal Phenotype in Metastasis. Frontiers in Oncology5: 155. PMID26258068. PMC4507461. DOI: 10.3389/fonc.2015.00155.
Zhang J, Tian XJ, Zhang H, Teng Y, Li R, Bai F, Elankumaran S, Xing J (September 2014). TGF-β-induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple feedback loops. Science Signaling7 (345): ra91. PMID25270257. DOI: 10.1126/scisignal.2005304.
Lu M, Jolly MK, Levine H, Onuchic JN, Ben-Jacob E (November 2013). MicroRNA-based regulation of epithelial-hybrid-mesenchymal fate determination. Proceedings of the National Academy of Sciences of the United States of America110 (45): 18144–9. PMID24154725. PMC3831488. DOI: 10.1073/pnas.1318192110.
Jia D, Jolly MK, Tripathi SC, Den Hollander P, Huang B, Lu M, Celiktas M, Ramirez-Peña E, Ben-Jacob E, Onuchic JN, Hanash SM, Mani SA, Levine H (2017). Distinguishing mechanisms underlying EMT tristability. Cancer Convergence1 (1): 2. PMID29623961. PMC5876698. DOI: 10.1186/s41236-017-0005-8.
Jolly MK, Tripathi SC, Jia D, Mooney SM, Celiktas M, Hanash SM, Mani SA, Pienta KJ, Ben-Jacob E, Levine H (May 2016). Stability of the hybrid epithelial/mesenchymal phenotype. Oncotarget7 (19): 27067–84. PMID27008704. PMC5053633. DOI: 10.18632/oncotarget.8166.
Ye X, Weinberg RA (November 2015). Epithelial-Mesenchymal Plasticity: A Central Regulator of Cancer Progression. Trends in Cell Biology25 (11): 675–686. PMID26437589. PMC4628843. DOI: 10.1016/j.tcb.2015.07.012.
Chu IM, Lai WC, Aprelikova O, El Touny LH, Kouros-Mehr H, Green JE (2013). Expression of GATA3 in MDA-MB-231 triple-negative breast cancer cells induces a growth inhibitory response to TGFß. PLOS ONE8 (4): e61125. PMID23577196. PMC3620110. DOI: 10.1371/journal.pone.0061125.
Ratnayake WS, Apostolatos AH, Ostrov DA, Acevedo-Duncan M (2017). Two novel atypical PKC inhibitors; ACPD and DNDA effectively mitigate cell proliferation and epithelial to mesenchymal transition of metastatic melanoma while inducing apoptosis. Int. J. Oncol.51 (5): 1370–1382. PMID29048609. PMC5642393. DOI: 10.3892/ijo.2017.4131.
Ratnayake WS, Apostolatos CA, Apostolatos AH, Schutte RJ, Huynh MA, Ostrov DA, Acevedo-Duncan M (2018). Oncogenic PKC-ι activates Vimentin during epithelial-mesenchymal transition in melanoma; a study based on PKC-ι and PKC-ζ specific inhibitors. Cell Adhes. Migr.12 (5): 447–463. PMID29781749. PMC6363030. DOI: 10.1080/19336918.2018.1471323.
Ricciardi M, Zanotto M, Malpeli G, Bassi G, Perbellini O, Chilosi M, Bifari F, Krampera M (March 2015). Epithelial-to-mesenchymal transition (EMT) induced by inflammatory priming elicits mesenchymal stromal cell-like immune-modulatory properties in cancer cells. British Journal of Cancer112 (6): 1067–75. PMID25668006. PMC4366889. DOI: 10.1038/bjc.2015.29.
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell133 (4): 704–15. PMID18485877. PMC2728032. DOI: 10.1016/j.cell.2008.03.027.
Singh A, Settleman J (2010). EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene29 (34): 4741–4751. PMID20531305. PMC3176718. DOI: 10.1038/onc.2010.215.
Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, Choi H, El Rayes T, Ryu S, Troeger J, Schwabe RF, Vahdat LT, Altorki NK, Mittal V, Gao D (November 2015). Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature527 (7579): 472–6. PMID26560033. PMC4662610. DOI: 10.1038/nature15748.
Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H, Wu CC, LeBleu VS, Kalluri R (November 2015). Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature527 (7579): 525–530. PMID26560028. PMC4849281. DOI: 10.1038/nature16064.
Jaguva Vasudevan AA, Hoffmann MJ, Beck ML, Poschmann G, Petzsch P, Wiek C, Stühler K, Köhrer K, Schulz WA, Niegisch G (April 2019). HDAC5 Expression in Urothelial Carcinoma Cell Lines Inhibits Long-Term Proliferation but Can Promote Epithelial-to-Mesenchymal Transition. International Journal of Molecular Sciences20 (9): 2135. PMID31052182. PMC6539474. DOI: 10.3390/ijms20092135.
Möhle R, Green D, Moore MA, Nachman RL, Rafii S (January 1997). Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proceedings of the National Academy of Sciences of the United States of America94 (2): 663–8. PMID9012841. PMC19570. DOI: 10.1073/pnas.94.2.663.
Li JJ, Huang YQ, Basch R, Karpatkin S (February 2001). Thrombin induces the release of angiopoietin-1 from platelets. Thrombosis and Haemostasis85 (2): 204–6. PMID11246533. DOI: 10.1055/s-0037-1615677.
Oft M, Heider KH, Beug H (November 1998). TGFbeta signaling is necessary for carcinoma cell invasiveness and metastasis. Current Biology8 (23): 1243–52. PMID9822576. DOI: 10.1016/s0960-9822(07)00533-7.
Bakewell SJ, Nestor P, Prasad S, Tomasson MH, Dowland N, Mehrotra M, Scarborough R, Kanter J, Abe K, Phillips D, Weilbaecher KN (November 2003). Platelet and osteoclast beta3 integrins are critical for bone metastasis. Proceedings of the National Academy of Sciences of the United States of America100 (24): 14205–10. PMID14612570. PMC283570. DOI: 10.1073/pnas.2234372100.
Yingling JM, Blanchard KL, Sawyer JS (December 2004). Development of TGF-beta signalling inhibitors for cancer therapy. Nature Reviews. Drug Discovery3 (12): 1011–22. PMID15573100. DOI: 10.1038/nrd1580.
Zou J, Luo H, Zeng Q, Dong Z, Wu D, Liu L (June 2011). Protein kinase CK2α is overexpressed in colorectal cancer and modulates cell proliferation and invasion via regulating EMT-related genes. Journal of Translational Medicine9: 97. PMID21702981. PMC3132712. DOI: 10.1186/1479-5876-9-97.
Gowda C, Sachdev M, Muthusami S, Kapadia M, Petrovic-Dovat L, Hartman M, Ding Y, Song C, Payne JL, Tan BH, Dovat S (2017). Casein Kinase II (CK2) as a Therapeutic Target for Hematological Malignancies. Current Pharmaceutical Design23 (1): 95–107. PMID27719640. DOI: 10.2174/1381612822666161006154311.
Bhola NE, Balko JM, Dugger TC, Kuba MG, Sánchez V, Sanders M, Stanford J, Cook RS, Arteaga CL (March 2013). TGF-β inhibition enhances chemotherapy action against triple-negative breast cancer. The Journal of Clinical Investigation123 (3): 1348–58. PMID23391723. PMC3582135. DOI: 10.1172/JCI65416.
Kothari AN, Mi Z, Zapf M, Kuo PC (15 oktober 2014). Novel clinical therapeutics targeting the epithelial to mesenchymal transition. Clinical and Translational Medicine3: 35. PMID25343018. PMC4198571. DOI: 10.1186/s40169-014-0035-0.
Rupaimoole R, Slack FJ (March 2017). MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nature Reviews. Drug Discovery16 (3): 203–222. PMID28209991. DOI: 10.1038/nrd.2016.246.
Lv H, Zhang S, Wang B, Cui S, Yan J (August 2006). Toxicity of cationic lipids and cationic polymers in gene delivery. Journal of Controlled Release114 (1): 100–9. PMID16831482. DOI: 10.1016/j.jconrel.2006.04.014.
Morton RA, Geras-Raaka E, Wilson LM (2007). Endocrine precursor cells from mouse islets are not generated by epithelial-to-mesenchymal transition of mature beta cells. Mol Cell Endocrinol270 (1–2): 87–93. PMID17363142. PMC1987709. DOI: 10.1016/j.mce.2007.02.005.
Kong D, Li Y, Wang Z, Sarkar FH (February 2011). Cancer Stem Cells and Epithelial-to-Mesenchymal Transition (EMT)-Phenotypic Cells: Are They Cousins or Twins?. Cancers3 (1): 716–29. PMID21643534. PMC3106306. DOI: 10.3390/cancers30100716.
Sciacovelli M, Frezza C (October 2017). Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer. The FEBS Journal284 (19): 3132–3144. PMID28444969. PMC6049610. DOI: 10.1111/febs.14090.
Li L, Li W (June 2015). Epithelial-mesenchymal transition in human cancer: comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacology & Therapeutics150: 33–46. PMID25595324. DOI: 10.1016/j.pharmthera.2015.01.004.
Peinado H, Olmeda D, Cano A (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?. Nature Reviews Cancer7 (6): 415–428. PMID17508028. DOI: 10.1038/nrc2131.
Yang J, Weinberg RA (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell14 (6): 818–829. PMID18539112. DOI: 10.1016/j.devcel.2008.05.009.
De Craene B, Berx G (2013). Regulatory networks defining EMT during cancer initiation and progression. Nature Reviews Cancer13 (2): 97–110. PMID23344542. DOI: 10.1038/nrc3447.
Chakrabarti R, Hwang J, Andres Blanco M, Wei Y, Lukačišin M, Romano RA, Smalley K, Liu S, Yang Q, Ibrahim T, Mercatali L, Amadori D, Haffty BG, Sinha S, Kang Y (2012). Elf5 inhibits the epithelial-mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nat Cell Biol14 (11): 1212–1222. PMID23086238. PMC3500637. DOI: 10.1038/ncb2607.
Nouri M, Ratther E, Stylianou N, Nelson CC, Hollier BG, Williams ED (2014). Androgen-targeted therapy-induced epithelial mesenchymal plasticity and neuroendocrine transdifferentiation in prostate cancer: an opportunity for intervention. Front Oncol4: 370. PMID25566507. PMC4274903. DOI: 10.3389/fonc.2014.00370.
Zhang L, Huang G, Li X, Zhang Y, Jiang Y, Shen J, Liu J, Wang Q, Zhu J, Feng X, Dong J, Qian C (March 2013). Hypoxia induces epithelial-mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor -1α in hepatocellular carcinoma. BMC Cancer13: 108. PMID23496980. PMC3614870. DOI: 10.1186/1471-2407-13-108.
Ciruna B, Rossant J (July 2001). FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Developmental Cell1 (1): 37–49. PMID11703922. DOI: 10.1016/s1534-5807(01)00017-x.
Lu Z, Ghosh S, Wang Z, Hunter T (December 2003). Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell4 (6): 499–515. PMID14706341. DOI: 10.1016/s1535-6108(03)00304-0.
Boyer B, Tucker GC, Vallés AM, Franke WW, Thiery JP (October 1989). Rearrangements of desmosomal and cytoskeletal proteins during the transition from epithelial to fibroblastoid organization in cultured rat bladder carcinoma cells. The Journal of Cell Biology109 (4 Pt 1): 1495–509. PMID2677020. PMC2115780. DOI: 10.1083/jcb.109.4.1495.
Herfs M, Hubert P, Suarez-Carmona M, Reschner A, Saussez S, Berx G, Savagner P, Boniver J, Delvenne P (April 2010). Regulation of p63 isoforms by snail and slug transcription factors in human squamous cell carcinoma. The American Journal of Pathology176 (4): 1941–9. PMID20150431. PMC2843482. DOI: 10.2353/ajpath.2010.090804.
Larue L, Bellacosa A (November 2005). Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3' kinase/AKT pathways. Oncogene24 (50): 7443–54. PMID16288291. DOI: 10.1038/sj.onc.1209091.
Vlahopoulos SA, Logotheti S, Mikas D, Giarika A, Gorgoulis V, Zoumpourlis V (April 2008). The role of ATF-2 in oncogenesis. BioEssays30 (4): 314–27. PMID18348191. DOI: 10.1002/bies.20734.
Katoh Y, Katoh M (September 2008). Hedgehog signaling, epithelial-to-mesenchymal transition and miRNA (review). International Journal of Molecular Medicine22 (3): 271–5. PMID18698484.
Micalizzi DS, Farabaugh SM, Ford HL (2010). Epithelial-Mesenchymal Transition in Cancer: Parallels between Normal Development and Tumor Progression. J Mammary Gland Biol Neoplasia15 (2): 117–134. PMID20490631. PMC2886089. DOI: 10.1007/s10911-010-9178-9.
Kang Y, He W, Tulley S, Gupta GP, Serganova I, Chen CR, Manova-Todorova K, Blasberg R, Gerald WL, Massagué J (2005). Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. PNAS102 (39): 13909–14. PMID16172383. PMC1236573. DOI: 10.1073/pnas.0506517102.
Chang C, Chao C, Xia W, Yang J, Xiong Y, Li C, Yu W, Rehman SK, Hsu JL, Lee H, Liu M, Chen C, Yu D, Hung M (2011). p53 regulates epithelial-mesenchymal transition (EMT) and stem cell properties through modulating miRNAs. Nat Cell Biol13 (3): 317–323. PMID21336307. PMC3075845. DOI: 10.1038/ncb2173.
Hay ED (2005). The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev. Dyn.233 (3): 706–20. PMID15937929. DOI: 10.1002/dvdy.20345.
Kerosuo L, Bronner-Fraser M (2012). What is bad in cancer is good in the embryo: Importance of EMT in neural crest development. Seminars in Cell and Developmental Biology23 (3): 320–332. PMID22430756. PMC3345076. DOI: 10.1016/j.semcdb.2012.03.010.
Ahmed N, Maines-Bandiera S, Quinn MA, Unger WG, Dedhar S, Auersperg N (2006). Molecular pathways regulating EGF-induced epithelio- mesenchymal transition in human ovarian surface epithelium. Am J Physiol Cell Physiol290 (6): C1532–C1542. PMID16394028. DOI: 10.1152/ajpcell.00478.2005.
Jolly MK, Boareto M, Huang B, Jia D, Lu M, Ben-Jacob E, Onuchic JN, Levine H (1 januari 2015). Implications of the Hybrid Epithelial/Mesenchymal Phenotype in Metastasis. Frontiers in Oncology5: 155. PMID26258068. PMC4507461. DOI: 10.3389/fonc.2015.00155.
Zhang J, Tian XJ, Zhang H, Teng Y, Li R, Bai F, Elankumaran S, Xing J (September 2014). TGF-β-induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple feedback loops. Science Signaling7 (345): ra91. PMID25270257. DOI: 10.1126/scisignal.2005304.
Lu M, Jolly MK, Levine H, Onuchic JN, Ben-Jacob E (November 2013). MicroRNA-based regulation of epithelial-hybrid-mesenchymal fate determination. Proceedings of the National Academy of Sciences of the United States of America110 (45): 18144–9. PMID24154725. PMC3831488. DOI: 10.1073/pnas.1318192110.
Jia D, Jolly MK, Tripathi SC, Den Hollander P, Huang B, Lu M, Celiktas M, Ramirez-Peña E, Ben-Jacob E, Onuchic JN, Hanash SM, Mani SA, Levine H (2017). Distinguishing mechanisms underlying EMT tristability. Cancer Convergence1 (1): 2. PMID29623961. PMC5876698. DOI: 10.1186/s41236-017-0005-8.
Jolly MK, Tripathi SC, Jia D, Mooney SM, Celiktas M, Hanash SM, Mani SA, Pienta KJ, Ben-Jacob E, Levine H (May 2016). Stability of the hybrid epithelial/mesenchymal phenotype. Oncotarget7 (19): 27067–84. PMID27008704. PMC5053633. DOI: 10.18632/oncotarget.8166.
Ye X, Weinberg RA (November 2015). Epithelial-Mesenchymal Plasticity: A Central Regulator of Cancer Progression. Trends in Cell Biology25 (11): 675–686. PMID26437589. PMC4628843. DOI: 10.1016/j.tcb.2015.07.012.
Chu IM, Lai WC, Aprelikova O, El Touny LH, Kouros-Mehr H, Green JE (2013). Expression of GATA3 in MDA-MB-231 triple-negative breast cancer cells induces a growth inhibitory response to TGFß. PLOS ONE8 (4): e61125. PMID23577196. PMC3620110. DOI: 10.1371/journal.pone.0061125.
Ratnayake WS, Apostolatos AH, Ostrov DA, Acevedo-Duncan M (2017). Two novel atypical PKC inhibitors; ACPD and DNDA effectively mitigate cell proliferation and epithelial to mesenchymal transition of metastatic melanoma while inducing apoptosis. Int. J. Oncol.51 (5): 1370–1382. PMID29048609. PMC5642393. DOI: 10.3892/ijo.2017.4131.
Ratnayake WS, Apostolatos CA, Apostolatos AH, Schutte RJ, Huynh MA, Ostrov DA, Acevedo-Duncan M (2018). Oncogenic PKC-ι activates Vimentin during epithelial-mesenchymal transition in melanoma; a study based on PKC-ι and PKC-ζ specific inhibitors. Cell Adhes. Migr.12 (5): 447–463. PMID29781749. PMC6363030. DOI: 10.1080/19336918.2018.1471323.
Ricciardi M, Zanotto M, Malpeli G, Bassi G, Perbellini O, Chilosi M, Bifari F, Krampera M (March 2015). Epithelial-to-mesenchymal transition (EMT) induced by inflammatory priming elicits mesenchymal stromal cell-like immune-modulatory properties in cancer cells. British Journal of Cancer112 (6): 1067–75. PMID25668006. PMC4366889. DOI: 10.1038/bjc.2015.29.
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell133 (4): 704–15. PMID18485877. PMC2728032. DOI: 10.1016/j.cell.2008.03.027.
Singh A, Settleman J (2010). EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene29 (34): 4741–4751. PMID20531305. PMC3176718. DOI: 10.1038/onc.2010.215.
Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, Choi H, El Rayes T, Ryu S, Troeger J, Schwabe RF, Vahdat LT, Altorki NK, Mittal V, Gao D (November 2015). Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature527 (7579): 472–6. PMID26560033. PMC4662610. DOI: 10.1038/nature15748.
Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H, Wu CC, LeBleu VS, Kalluri R (November 2015). Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature527 (7579): 525–530. PMID26560028. PMC4849281. DOI: 10.1038/nature16064.
Jaguva Vasudevan AA, Hoffmann MJ, Beck ML, Poschmann G, Petzsch P, Wiek C, Stühler K, Köhrer K, Schulz WA, Niegisch G (April 2019). HDAC5 Expression in Urothelial Carcinoma Cell Lines Inhibits Long-Term Proliferation but Can Promote Epithelial-to-Mesenchymal Transition. International Journal of Molecular Sciences20 (9): 2135. PMID31052182. PMC6539474. DOI: 10.3390/ijms20092135.
Möhle R, Green D, Moore MA, Nachman RL, Rafii S (January 1997). Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proceedings of the National Academy of Sciences of the United States of America94 (2): 663–8. PMID9012841. PMC19570. DOI: 10.1073/pnas.94.2.663.
Li JJ, Huang YQ, Basch R, Karpatkin S (February 2001). Thrombin induces the release of angiopoietin-1 from platelets. Thrombosis and Haemostasis85 (2): 204–6. PMID11246533. DOI: 10.1055/s-0037-1615677.
Oft M, Heider KH, Beug H (November 1998). TGFbeta signaling is necessary for carcinoma cell invasiveness and metastasis. Current Biology8 (23): 1243–52. PMID9822576. DOI: 10.1016/s0960-9822(07)00533-7.
Bakewell SJ, Nestor P, Prasad S, Tomasson MH, Dowland N, Mehrotra M, Scarborough R, Kanter J, Abe K, Phillips D, Weilbaecher KN (November 2003). Platelet and osteoclast beta3 integrins are critical for bone metastasis. Proceedings of the National Academy of Sciences of the United States of America100 (24): 14205–10. PMID14612570. PMC283570. DOI: 10.1073/pnas.2234372100.
Yingling JM, Blanchard KL, Sawyer JS (December 2004). Development of TGF-beta signalling inhibitors for cancer therapy. Nature Reviews. Drug Discovery3 (12): 1011–22. PMID15573100. DOI: 10.1038/nrd1580.
Zou J, Luo H, Zeng Q, Dong Z, Wu D, Liu L (June 2011). Protein kinase CK2α is overexpressed in colorectal cancer and modulates cell proliferation and invasion via regulating EMT-related genes. Journal of Translational Medicine9: 97. PMID21702981. PMC3132712. DOI: 10.1186/1479-5876-9-97.
Gowda C, Sachdev M, Muthusami S, Kapadia M, Petrovic-Dovat L, Hartman M, Ding Y, Song C, Payne JL, Tan BH, Dovat S (2017). Casein Kinase II (CK2) as a Therapeutic Target for Hematological Malignancies. Current Pharmaceutical Design23 (1): 95–107. PMID27719640. DOI: 10.2174/1381612822666161006154311.
Bhola NE, Balko JM, Dugger TC, Kuba MG, Sánchez V, Sanders M, Stanford J, Cook RS, Arteaga CL (March 2013). TGF-β inhibition enhances chemotherapy action against triple-negative breast cancer. The Journal of Clinical Investigation123 (3): 1348–58. PMID23391723. PMC3582135. DOI: 10.1172/JCI65416.
Kothari AN, Mi Z, Zapf M, Kuo PC (15 oktober 2014). Novel clinical therapeutics targeting the epithelial to mesenchymal transition. Clinical and Translational Medicine3: 35. PMID25343018. PMC4198571. DOI: 10.1186/s40169-014-0035-0.
Rupaimoole R, Slack FJ (March 2017). MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nature Reviews. Drug Discovery16 (3): 203–222. PMID28209991. DOI: 10.1038/nrd.2016.246.
Lv H, Zhang S, Wang B, Cui S, Yan J (August 2006). Toxicity of cationic lipids and cationic polymers in gene delivery. Journal of Controlled Release114 (1): 100–9. PMID16831482. DOI: 10.1016/j.jconrel.2006.04.014.
Morton RA, Geras-Raaka E, Wilson LM (2007). Endocrine precursor cells from mouse islets are not generated by epithelial-to-mesenchymal transition of mature beta cells. Mol Cell Endocrinol270 (1–2): 87–93. PMID17363142. PMC1987709. DOI: 10.1016/j.mce.2007.02.005.