M.Hayyan, M.A. Hashim, I.M. AlNashef. (2016). Superoxide Ion: Generation and Chemical ImplicationsChem.Rev.. 116 (5): pag.: 3029–3085DOI:10.1021/acs.chemrev.5b00407
Martha E. Sosa Torres, Juan P. Saucedo-Vázquez, Peter M.H. Kroneck. (2015). Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases, Chapter 1, Section 3 The dark side of dioxygen' Ed.: Peter M.H. Kroneck, Martha E. Sosa Torres Metal Ions in Life Sciences. 15pag.: 1–12 Springer DOI:10.1007/978-3-319-12415-5_1
D. Han, E. Williams, E. Cadenas. (2001). Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane spaceThe Biochemical Journal. 353 (2): pag.: 411–416DOI:10.1042/0264-6021:3530411 PubMed Central: 1221585PubMed: 11139407
X. Li, P. Fang, J. Mai, E.T. Choi, H. Wang, X.F. Yang. (2013). Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancersJ.Hematology & Oncology. 6 (19): pag.: 19DOI:10.1186/1756-8722-6-19 PubMed Central: 3599349PubMed: 23442817
G.E. Conner, M. Salathe, R. Forteza. (2002). Lactoperoxidase and hydrogen peroxide metabolism in the airwayAmerican Journal of Respiratory and Critical Care Medicine. 166 (12 pt2): pag.: S57-61DOI:10.1164/rccm.2206018 PubMed: 12471090
H.J. Kim, C.H. Kim, J.H. Ryu, M.J. Kim, C.Y. Park, J.M. Lee, M.J. Holtzman, J.H. Yoon. (2013). Reactive oxygen species induce antiviral innate immune response through IFN-λ regulation in human nasal epithelial cellsAmerican Journal of Respiratory Cell and Molecular Biology. 49 (5): pag.: 855–865DOI:10.1165/rcmb.2013-0003OC PubMed: 23786562
C. Deffert, J. Cachat, K.H. Krause. (2014). Phagocyte NADPH oxidase, chronic granulomatous disease and mycobacterial infectionsCellular Microbiology. 16 (8): pag.: 1168–1178DOI:10.1111/cmi.12322 PubMed: 24916152
J. Liu, E. Head, A.M. Gharib, W. Yuan, R.T. Ingersoll, T.M. Hagen, C.W. Cotman, B.N. Ames. (2002). Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-L-carnitine and/or R-alpha -lipoic acidProceedings of the National Academy of Sciences of the United States of America. 99 (4): pag.: 2356–2361DOI:10.1073/pnas.261709299 PubMed Central: 122369PubMed: 11854529
J.M. Carney, P.E. Starke-Reed, C.N. Oliver, R.W. Landum, M.S. Cheng, J.F. Wu, R.A. Floyd. (1991). Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitroneProceedings of the National Academy of Sciences of the United States of America. 88 (9): pag.: 3633–3636DOI:10.1073/pnas.88.9.3633 PubMed Central: 51506PubMed: 1673789
Zie voor de verscjillende soorten beschadigingen bijvoorbeeld:
D. Han, E. Williams, E. Cadenas. (2001). Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane spaceThe Biochemical Journal. 353 (2): pag.: 411–416DOI:10.1042/0264-6021:3530411 PubMed Central: 1221585PubMed: 11139407
X. Li, P. Fang, J. Mai, E.T. Choi, H. Wang, X.F. Yang. (2013). Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancersJ.Hematology & Oncology. 6 (19): pag.: 19DOI:10.1186/1756-8722-6-19 PubMed Central: 3599349PubMed: 23442817
G.E. Conner, M. Salathe, R. Forteza. (2002). Lactoperoxidase and hydrogen peroxide metabolism in the airwayAmerican Journal of Respiratory and Critical Care Medicine. 166 (12 pt2): pag.: S57-61DOI:10.1164/rccm.2206018 PubMed: 12471090
H.J. Kim, C.H. Kim, J.H. Ryu, M.J. Kim, C.Y. Park, J.M. Lee, M.J. Holtzman, J.H. Yoon. (2013). Reactive oxygen species induce antiviral innate immune response through IFN-λ regulation in human nasal epithelial cellsAmerican Journal of Respiratory Cell and Molecular Biology. 49 (5): pag.: 855–865DOI:10.1165/rcmb.2013-0003OC PubMed: 23786562
C. Deffert, J. Cachat, K.H. Krause. (2014). Phagocyte NADPH oxidase, chronic granulomatous disease and mycobacterial infectionsCellular Microbiology. 16 (8): pag.: 1168–1178DOI:10.1111/cmi.12322 PubMed: 24916152
J. Liu, E. Head, A.M. Gharib, W. Yuan, R.T. Ingersoll, T.M. Hagen, C.W. Cotman, B.N. Ames. (2002). Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-L-carnitine and/or R-alpha -lipoic acidProceedings of the National Academy of Sciences of the United States of America. 99 (4): pag.: 2356–2361DOI:10.1073/pnas.261709299 PubMed Central: 122369PubMed: 11854529
J.M. Carney, P.E. Starke-Reed, C.N. Oliver, R.W. Landum, M.S. Cheng, J.F. Wu, R.A. Floyd. (1991). Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitroneProceedings of the National Academy of Sciences of the United States of America. 88 (9): pag.: 3633–3636DOI:10.1073/pnas.88.9.3633 PubMed Central: 51506PubMed: 1673789
Zie voor de verscjillende soorten beschadigingen bijvoorbeeld:
Yun Jeong Kim, Yong Kyoo Shin, Dong Suep Sohn, Chung Soo Lee. (2014). Menadione induces the formation of reactive oxygen species and depletion of GSH-mediated apoptosis and inhibits the FAK-mediated cell invasionNaunyn-Schmiedeberg's Archives of Pharmacology. 387 (9): pag.: 799–809 springer.com: Menadione induces the formation of reactive oxygen species geraadpleegd op 8 mei 2018 (alleen samenvatting, voor volledig artikel is betaald abonnement nodig)