(en) Supercapacitor Market Size, Share. Allied Market Research. Gearchiveerd op 27 maart 2023. Geraadpleegd op 7 november 2023. “The global supercapacitor market size was valued at $3.27 billion in 2019 and is expected to reach $16.95 billion by 2027, growing at a CAGR of 23.3% from 2020 to 2027.”
Elzbieta, Frackowiak, Francois Béguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39, 6, blz. 937–950, May 2001, DOI:10.1016/S0008-6223(00)00183-4
Toupin, Mathieu, Brousse, Thierry, Bélanger, Daniel. Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor, Chem. Mater, 2004, 16, 16, blz. 3184–3190, DOI:10.1021/cm049649j
Pang, Suh-Cem, Anderson, Marc A., Chapman, Thomas W. Novel Electrode Materials for Thin-Film Ultracapacitors: Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide, Journal of the Electrochemical Society, 147, 2, blz. 444–450, 2000, DOI:10.1149/1.1393216
Pandolfo, A.G., Hollenkamp, A.F., Carbon properties and their role in supercapacitors, J. Power Sources, 157, 1, blz. 11–27, June 2006, DOI:10.1016/j.jpowsour.2006.02.065
U. Fischer, R. Saliger, V. Bock, R. Petricevic, Fricke, Carbon aerogels as electrode material in supercapacitors, J. Porous Mat., 4, 4, October 1997, blz. 281–285, DOI:10.1023/A:1009629423578
Hsing-Chi, Chien, Wei-Yun, Cheng, Yong-Hui, Wang, Shih-Yuan, Lu, Ultrahigh Specific Capacitances for Supercapacitors Achieved by Nickel Cobaltite/Carbon Aerogel Composites, Advanced Functional Materials, 2012-12-05, ISSN1616-3028, blz. 5038–5043, 22, 23, DOI:10.1002/adfm.201201176
Presser, V., Heon, M., Gogotsi, Y., Carbide-derived carbons – From porous networks to nanotubes and graphene, Adv. Funct. Mater., 21, 5, March 2011, blz. 810–833, DOI:10.1002/adfm.201002094
Yoo, J. J., Balakrishnan, K., Huang, J., Meunier, V., Sumpter, B. G., Srivastava, A., Conway, M., Reddy, A. L. M., Yu, J., Vajtai, R., Ajayan, P.M., Ultrathin planar graphene supercapacitors, Nano Letters, 11, 4, March 2011, blz. 1423–1427, DOI:10.1021/nl200225j
Palaniselvam, Thangavelu, Baek, Jong-Beom, Graphene based 2D-materials for supercapacitors, 2D Materials, 2, 3, 2015, blz. 032002, DOI:10.1088/2053-1583/2/3/032002
Pushparaj, V.L., Shaijumon, M.M., Kumar, A., Murugesan, S., Ci, L., Vajtai, R., Linhardt, R.J., Nalamasu, O., Ajayan, P.M., Flexible energy storage devices based on nanocomposite paper, Proc. Natl. Acad. Sci. USA, 104, 34, August 2007, blz. 13574–13577, DOI:10.1073/pnas.0706508104, PMID17699622, PMC1959422
El-Kady, M.F., Strong,V., Dubin, S., Kaner, R.B., Laser scribing of high-performance and flexible graphene-based electrochemical capacitors, Science, 335, 6074, March 2012, blz. 1326–1330, DOI:10.1126/science.1216744
Chenguang, L., Zhenning, Y., Neff, D., Zhamu, A., Jang,B.Z., Graphene-based supercapacitor with an ultrahigh energy density, Nano Letters, November 2010, 10, 12, blz. 4863–4868, DOI:10.1021/nl102661q, PMID21058713
Miller, J.R., Outlaw, R.A., Holloway, B.C., Graphene double-layer capacitor with ac line-filtering, Science, September 2010, 329, 5999, blz. 1637–1639, DOI:10.1126/science.1194372, PMID20929845
R. Signorelli, D.C. Ku, J.G. Kassakian, J.E. Schindall, Electrochemical Double-Layer Capacitors Using Carbon Nanotube Electrode Structures, Proc. IEEE, 97, 11, 2009, blz. 1837–1847, DOI:10.1109/JPROC.2009.2030240
X., Li, J. Rong, B. Wei, Electrochemical Behavior of Single-Walled Carbon Nanotube Supercapacitors under Compressive Stress, ACS Nano, 4, 10, 2010, blz. 6039–6049, DOI:10.1021/nn101595y, PMID20828214
Conway, B. E., Birss, V., Wojtowicz, J., 1997, The role and the utilization of pseudocapacitance for energy storage by supercapacitors, Journal of Power Sources, 66, 1–2, blz, 1–14, DOI:10.1016/S0378-7753(96)02474-3
Dillon, A.C., Carbon Nanotubes for Photoconversion and Electrical Energy Storage, Chem. Rev., 2010, 110, 11, blz. 6856–6872, DOI:10.1021/cr9003314, PMID20839769
Brousse, Thierry, Bélanger, Daniel, Long, Jeffrey W., To Be or Not To Be Pseudocapacitive?, ournal of the Electrochemical Society, 162, 5, blz. A5185–A5189, 2015-01-01, DOI:10.1149/2.0201505jes, ISSN0013-4651
Brian Evans, Conway, Brian Evans Conway, =Transition from 'Supercapacitor' to 'Battery' Behavior in Electrochemical Energy Storage, J. Electrochem. Soc., 138, 6, mei 1991, blz. 1539–1548, DOI:10.1149/1.2085829
Das, Rajib K., Liu, Bo, Reynolds, John R., Rinzler, Engineered Macroporosity in Single-Wall Carbon Nanotube Films, Nano Letters, 9, 2, blz. 677–683, 2009, DOI:10.1021/nl803168s, PMID19170555
Wang W., Guo S., Lee I., Ahmed, K. Zhong J., Favors Z., Zaera F.. Ozkan M., Ozkan C. S., Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors, Scientific Reports, 4, blz. 4452, 2014, DOI:10.1038/srep04452, PMID24663242
Li, Xin, Wei, Bingqing. Facile synthesis and super capacitive behavior of SWNT/MnO2 hybrid films, Nano Energy, 1, 3, blz. pages=479–487, 2012, DOI:10.1016/j.nanoen.2012.02.011
J. R. Miller, A. F. Burke, Electrochemical Capacitors: Challenges and Opportunities for Real-World Applications, ECS, Vol. 17, No. 1, Spring 2008 (pdf)
Yu.M. Volfkovich, A.A. Mikhailin, D.A. Bograchev, V.E. Sosenkin and V.S. Bagotsky, Studies of Supercapacitor Carbon Electrodes with High Pseudocapacitance, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia, Dr. Ujjal Kumar Sur (Ed.), ISBN 978-953-307-830-4, pdf
Pushparaj, V.L., Shaijumon, M.M., Kumar, A., Murugesan, S., Ci, L., Vajtai, R., Linhardt, R.J., Nalamasu, O., Ajayan, P.M., Flexible energy storage devices based on nanocomposite paper, Proc. Natl. Acad. Sci. USA, 104, 34, August 2007, blz. 13574–13577, DOI:10.1073/pnas.0706508104, PMID17699622, PMC1959422
Chenguang, L., Zhenning, Y., Neff, D., Zhamu, A., Jang,B.Z., Graphene-based supercapacitor with an ultrahigh energy density, Nano Letters, November 2010, 10, 12, blz. 4863–4868, DOI:10.1021/nl102661q, PMID21058713
Miller, J.R., Outlaw, R.A., Holloway, B.C., Graphene double-layer capacitor with ac line-filtering, Science, September 2010, 329, 5999, blz. 1637–1639, DOI:10.1126/science.1194372, PMID20929845
X., Li, J. Rong, B. Wei, Electrochemical Behavior of Single-Walled Carbon Nanotube Supercapacitors under Compressive Stress, ACS Nano, 4, 10, 2010, blz. 6039–6049, DOI:10.1021/nn101595y, PMID20828214
Dillon, A.C., Carbon Nanotubes for Photoconversion and Electrical Energy Storage, Chem. Rev., 2010, 110, 11, blz. 6856–6872, DOI:10.1021/cr9003314, PMID20839769
Das, Rajib K., Liu, Bo, Reynolds, John R., Rinzler, Engineered Macroporosity in Single-Wall Carbon Nanotube Films, Nano Letters, 9, 2, blz. 677–683, 2009, DOI:10.1021/nl803168s, PMID19170555
Wang W., Guo S., Lee I., Ahmed, K. Zhong J., Favors Z., Zaera F.. Ozkan M., Ozkan C. S., Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors, Scientific Reports, 4, blz. 4452, 2014, DOI:10.1038/srep04452, PMID24663242
Adam Marcus Namisnyk and J. G. Zhu, A Survey of Electrochemical Super-Capacitor Technology, 2003, Bachelor-Arbeit; University of Technology, Sydney; 2003, pdf, geraadpleegd op 7 december 2015
Sergey Shleev, Elena González-Arribas, Magnus Falk, Biosupercapacitors, Review Article in Current Opinion in Electrochemistry, Volume 5, Issue 1, October 2017, Pages 226-233
scribd.com
Zbigniew Stojek, The Electrical Double Layer and its Structure, Fritz Scholz (Hrsg.): Electroanalytical Methods: Guide to Experiments and Applications, Springer, Berlin/Heidelberg, 2010, ISBN 978-3-64-202914-1, blz. 3–10, online geraadpleegd op 2014-01-05
B.E. Conway, W.G. Pell, Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices, springerlink.com[dode link], geraadpleegd op 5 januari 2014
tab-beim-bundestag.de
Dagmar Oertel: Sachstandsbericht zum Monitoring »Nachhaltige Energieversorgung« Energiespeicher – Stand und Perspektiven. In Arbeitsbericht Nr. 123, S. 86ff (Abschnitt: Elektrochemische Kondensatoren; pdf)
(en) Supercapacitor Market Size, Share. Allied Market Research. Gearchiveerd op 27 maart 2023. Geraadpleegd op 7 november 2023. “The global supercapacitor market size was valued at $3.27 billion in 2019 and is expected to reach $16.95 billion by 2027, growing at a CAGR of 23.3% from 2020 to 2027.”
J. M. Miller (Maxwell Technologies Inc.): Energy Storage Technology, Markets and Applications, Ultracapacitor’s in Combination with Lithium-ion. IEEE Rock River Valley, IL, Section, 26 april 2007 (pdf)
Michael Fröhlich, Markus Klohr, Stanislaus Pagiela: Energy Storage System with UltraCaps on Board of Railway Vehicles. In: Proceedings – 8th World Congress on Railway Research. Mei 2008, Soul, Korea (pdf
Stefan Kerschl, Eberhard Hipp, Gerald Lexen: Effizienter Hybridantrieb mit Ultracaps für Stadtbusse. 14. Aachener Kolloquium Fahrzeug- und Motorentechnik 2005 pdf
V.Härri, S.Eigen, B.Zemp, D.Carriero: Kleinbus „TOHYCO-Rider“ mit SAM-Superkapazitätenspeicher. Jahresbericht 2003 – Programm „Verkehr & Akkumulatoren“, HTA Luzern, Fachhochschule Zentralschweiz (pdf
M. Bodach, H. Mehlich, F. Hiller, S. König, D. Hrabal, J. De Roche: Zuverlässigkeit von Superkondensatoren im Hinblick auf Anwendungen im Automobil. In: ETG Fachbericht Internationaler ETG Kongress Karlsruhe 2007. VDE Verlag GmbH, ISBN 978-3-8007-3063-6. (siehe auch Vortragsfolien von M. Bodach, H. Mehlich: Zuverlässigkeitsaspekte bei der Anwendung von Supercaps (pdf 1,7 MB)
pdf, Nippon Chemi-Con liefert elektrische Doppelschicht-Kondensatoren (DLCAP) für PKWs. (pdf, 169 kB) Press Release Nippon Chemi-Con Corp., 6. Dezember 2011
Hsing-Chi, Chien, Wei-Yun, Cheng, Yong-Hui, Wang, Shih-Yuan, Lu, Ultrahigh Specific Capacitances for Supercapacitors Achieved by Nickel Cobaltite/Carbon Aerogel Composites, Advanced Functional Materials, 2012-12-05, ISSN1616-3028, blz. 5038–5043, 22, 23, DOI:10.1002/adfm.201201176
Brousse, Thierry, Bélanger, Daniel, Long, Jeffrey W., To Be or Not To Be Pseudocapacitive?, ournal of the Electrochemical Society, 162, 5, blz. A5185–A5189, 2015-01-01, DOI:10.1149/2.0201505jes, ISSN0013-4651