Philippe Édouard Léon VanP.É.L.V.TieghemPhilippe Édouard Léon VanP.É.L.V., Traité de botanique, wyd. 1, 1884, XXIII, 1103–1114 [dostęp 2022-02-26](fr.).
Woese CR., Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. „Proceedings of the National Academy of Sciences of the United States of America”. 74 (11), s. 5088–5090, 1977. DOI: 10.1073/pnas.74.11.5088. PMID: 270744. PMCID: PMC432104.
Thurston AJ. Of blood, inflammation and gunshot wounds: the history of the control of sepsis. „The Australian and New Zealand Journal of Surgery”. 70 (12), s. 855–861, 2000. DOI: 10.1046/j.1440-1622.2000.01983.x. PMID: 11167573.
Schwartz RS., Ehrlich P. Paul Ehrlich’s magic bullets. „The New England Journal of Medicine”. 350 (11), s. 1079–1080, 2004. DOI: 10.1056/NEJMp048021. PMID: 15014180.
Heide N. Schulz, Bo Barker Jørgensen. Big Bacteria. „Annual Review of Microbiology”. 55, s. 105–137, 2001. DOI: 10.1146/annurev.micro.55.1.105.
Rodney M. Donlan, J. William Costerton. Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms. „Clinical Microbiology Reviews”. 15 (2), s. 167–193, Apr 2002. DOI: 10.1128/CMR.15.2.167-193.2002. PMID: 11932229. PMCID: PMC118068.
Lawrence J. Shimkets. Intercellular Signaling During Frutining-Body Development of Myxococcus xanthus. „Annual Review of Microbiology”. 53, s. 525–549, 1999. DOI: 10.1146/annurev.micro.53.1.525.
Z. Gitai. The New Bacterial Cell Biology: Moving Parts and Subcellular Architecture. „Cell”. 120 (5), s. 577–586, 2005-03-11. DOI: 10.1016/j.cell.2005.02.026.
Kerfeld CA, Sawaya MR, Tanaka S, et al. Protein structures forming the shell of primitive bacterial organelles. „Science (journal)”. 5736 (309), s. 936–938, sierpień 2005. DOI: 10.1126/science.1113397. PMID: 16081736.
Yeates TO, Kerfeld CA, Heinhorst S, Cannon GC, Shively JM. Protein-based organelles in bacteria: carboxysomes and related microcompartments. „Nat. Rev. Microbiol.”, s. 681–691, sierpień 2008. DOI: 10.1038/nrmicro1913. PMID: 18679172.
Bryant DA, Frigaard NU. Prokaryotic photosynthesis and phototrophy illuminated. „Trends Microbiol.”. 11 (14), s. 488, 2006. DOI: 10.1016/j.tim.2006.09.001.
Thanbichler M, Wang S, Shapiro L. The bacterial nucleoid: a highly organized and dynamic structure. „J Cell Biochem”. 3 (96), s. 506–521, 2005. DOI: 10.1002/jcb.20519. PMID: 15988757.
Yeo M, Chater K. The interplay of glycogen metabolism and differentiation provides an insight into the developmental biology of Streptomyces coelicolor. „Microbiology”. Pt 3 (151), s. 855–861, 2005. DOI: 10.1099/mic.0.27428-0. PMID: 15758231.
Brune DC. Isolation and characterization of sulfur globule proteins from Chromatium vinosum and Thiocapsa roseopersicina. „Arch Microbiol”. 163 (6), s. 391–399, 1995. DOI: 10.1007/BF00272127. PMID: 7575095.
D. Kadouri, E. Jurkevitch, Y. Okon, S. Castro-Sowinski. Ecological and agricultural significance of bacterial polyhydroxyalkanoates. „Crit Rev Microbiol”. 31 (2), s. 55–67, 2005. DOI: 10.1080/10408410590899228. PMID: 15986831.
Koch A. Bacterial wall as target for attack: past, present, and future research. „Clin Microbiol Rev”. 4 (16), s. 673–687, 2003. DOI: 10.1128/CMR.16.4.673-687.2003. PMID: 14557293.
Walsh F, Amyes S. Microbiology and drug resistance mechanisms of fully resistant pathogens. „Curr Opin Microbiol”. 5 (7), s. 439–444, 2004. DOI: 10.1016/j.mib.2004.08.007. PMID: 15451497.
Engelhardt H, Peters J. Structural research on surface layers: a focus on stability, surface layer homology domains, and surface layer-cell wall interactions. „J Struct Biol”. 2–3 (124), s. 276–302, 1998. DOI: 10.1006/jsbi.1998.4070. PMID: 10049812.
Stokes R, Norris-Jones R, Brooks D, Beveridge T, Doxsee D, Thorson L. The glycan-rich outer layer of the cell wall of Mycobacterium tuberculosis acts as an antiphagocytic capsule limiting the association of the bacterium with macrophages. „Infect Immun”. 10 (72), s. 5676–5686, 2004. DOI: 10.1128/IAI.72.10.5676-5686.2004. PMID: 15385466.
Daffé M, Etienne G. The capsule of Mycobacterium tuberculosis and its implications for pathogenicity. „Tuber Lung Dis”. 3 (79), s. 153–169, 1999. DOI: 10.1054/tuld.1998.0200. PMID: 10656114.
Nicholson W, Fajardo-Cavazos P, Rebeil R, Slieman T, Riesenman P, Law J, Xue Y. Bacterial endospores and their significance in stress resistance. „Antonie Van Leeuwenhoek”. 1–4 (81), s. 27–32, 2002. DOI: 10.1023/A:1020561122764. PMID: 12448702.
Vreeland R, Rosenzweig W, Powers D. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. „Nature”. 6806 (407), s. 897–900, 2000. DOI: 10.1038/35038060. PMID: 11057666.
Cano R, Borucki M. Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. „Science”. 5213 (268), s. 1060–1064, 1995. DOI: 10.1126/science.7538699. PMID: 7538699.
Nealson K. Post-Viking microbiology: new approaches, new data, new insights. „Orig Life Evol Biosph”. 1 (29), s. 73–93, 1999. DOI: 10.1023/A:1006515817767. PMID: 11536899.
Xu J. Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances. „Mol Ecol”. 7 (15), s. 1713–1731, 2006. DOI: 10.1111/j.1365-294X.2006.02882.x. PMID: 16689892.
Hellingwerf K, Crielaard W, Hoff W, Matthijs H, Mur L, van Rotterdam B. Photobiology of bacteria. „Antonie Van Leeuwenhoek”. 4 (65), s. 331–347, 1994. DOI: 10.1007/BF00872217. PMID: 7832590.
Drake H, Daniel S, Küsel K, Matthies C, Kuhner C, Braus-Stromeyer S. Acetogenic bacteria: what are the in situ consequences of their diverse metabolic versatilities?. „Biofactors”. 1 (6), s. 13–24, 1997. DOI: 10.1002/biof.5520060103. PMID: 9233536.
FMM Morel, Kraepiel AML, Amyot M. The chemical cycle and bioaccumulation of mercury. „Annual Review of Ecological Systems”, s. 543–566, 1998. DOI: 10.1146/annurev.ecolsys.29.1.543.
Zehr J, Jenkins B, Short S, Steward G. Nitrogenase gene diversity and microbial community structure: a cross-system comparison. „Environ Microbiol”. 7 (5), s. 539–554, 2003. DOI: 10.1046/j.1462-2920.2003.00451.x. PMID: 12823187.
Koch A. Control of the bacterial cell cycle by cytoplasmic growth. „Crit Rev Microbiol”. 1 (28), s. 61–77, 2002. DOI: 10.1080/1040-840291046696. PMID: 12003041.
Thomson R, Bertram H. Laboratory diagnosis of central nervous system infections. „Infect Dis Clin North Am”. 4 (15), s. 1047–1071, 2001. DOI: 10.1016/S0891-5520(05)70186-0. PMID: 11780267.
Paerl H, Fulton R, Moisander P, Dyble J. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. „ScientificWorldJournal”, s. 76–113, 2001. DOI: 10.1100/tsw.2001.16. PMID: 12805693.
Prats C., López D., Giró A., Ferrer J., Valls J. Individual-based modelling of bacterial cultures to study the microscopic causes of the lag phase. „Journal of theoretical biology”. 4 (241), s. 939–953, sierpień 2006. DOI: 10.1016/j.jtbi.2006.01.029. PMID: 16524598.
Stewart EJ., Madden R., Paul G., Taddei F. Aging and death in an organism that reproduces by morphologically symmetric division. „PLoS biology”. 2 (3), s. e45, luty 2005. DOI: 10.1371/journal.pbio.0030045. PMID: 15685293.
Kooijman S, Auger P, Poggiale J, Kooi B. Quantitative steps in symbiogenesis and the evolution of homeostasis. „Biol Rev Camb Philos Soc”. 3 (78), s. 435–463, 2003. DOI: 10.1017/S1464793102006127. PMID: 14558592.
Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar H, Moran N, Hattori M. The 160-kilobase genome of the bacterial endosymbiont Carsonella. „Science”. 5797 (314), s. 267, 2006. DOI: 10.1126/science.1134196. PMID: 17038615.
Schneiker, S., O. Perlova, et al. Complete genome sequence of the myxobacterium Sorangium cellulosum. „Nature Biotechnology”. 25 (11), s. 1281–1289, 2007. DOI: 10.1038/nbt1354.
Brüssow H, Canchaya C, Hardt W. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. „Microbiol Mol Biol Rev”. 3 (68), s. 560–602, 2004. DOI: 10.1128/MMBR.68.3.560-602.2004. PMID: 15353570.
Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. „Science (journal)”. 5819 (315), s. 1709–1712, marzec 2007. DOI: 10.1126/science.1138140. PMID: 17379808.
Brouns SJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. „Science (journal)”. 5891 (321), s. 960–964, sierpień 2008. DOI: 10.1126/science.1159689. PMID: 18703739.
Hastings P, Rosenberg S, Slack A. Antibiotic-induced lateral transfer of antibiotic resistance. „Trends Microbiol”. 9 (12), s. 401–404, 2004. DOI: 10.1016/j.tim.2004.07.003. PMID: 15337159.
Merz A, So M, Sheetz M. Pilus retraction powers bacterial twitching motility. „Nature”. 6800 (407), s. 98–102, 2000. DOI: 10.1038/35024105. PMID: 10993081.
Wu M, Roberts J, Kim S, Koch D, DeLisa M. Collective bacterial dynamics revealed using a three-dimensional population-scale defocused particle tracking technique. „Appl Environ Microbiol”. 7 (72), s. 4987–4994, 2006. DOI: 10.1128/AEM.00158-06. PMID: 16820497.
Frankel R, Bazylinski D, Johnson M, Taylor B. Magneto-aerotaxis in marine coccoid bacteria. „Biophys J”. 2 (73), s. 994–1000, 1997. DOI: 10.1016/S0006-3495(97)78132-3. PMID: 9251816.
Schopf J. Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic. „Proc Natl Acad Sci U S a”. 15 (91), s. 6735–6742, 1994. DOI: 10.1073/pnas.91.15.6735. PMID: 8041691.
Di Giulio M. The universal ancestor and the ancestor of bacteria were hyperthermophiles. „J Mol Evol”. 6 (57), s. 721–730, 2003. DOI: 10.1007/s00239-003-2522-6. PMID: 14745541.
Battistuzzi F, Feijao A, Hedges S. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. „BMC Evol Biol”, s. 44, 2004. DOI: 10.1186/1471-2148-4-44. PMID: 15535883.
Dyall S, Brown M, Johnson P. Ancient invasions: from endosymbionts to organelles. „Science”. 5668 (304), s. 253–257, 2004. DOI: 10.1126/science.1094884. PMID: 15073369.
Poole A, Penny D. Evaluating hypotheses for the origin of eukaryotes. „Bioessays”. 1 (29), s. 74–84, 2007. DOI: 10.1002/bies.20516. PMID: 17187354.
Ebersold HR, Cordier JL, Lüthy P. Bacterial mesosomes: method dependent artifacts. „Archives of Microbiology”. 1981. 130. s. 19–22. DOI: 10.1007/BF00527066. PMID: 6796029.
Thomson R, Bertram H. Laboratory diagnosis of central nervous system infections. „Infect Dis Clin North Am”. 4 (15), s. 1047–1071, 2001. DOI: 10.1016/S0891-5520(05)70186-0. PMID: 11780267.
Boucher Y, Douady CJ, Papke RT, Walsh DA, Boudreau ME, Nesbo CL, Case RJ, Doolittle WF. Lateral gene transfer and the origins of prokaryotic groups. „Annu Rev Genet”, s. 283–328, 2003. DOI: 10.1146/annurev.genet.37.050503.084247. PMID: 14616063.
Curtis T, Sloan W, Scannell J. Estimating prokaryotic diversity and its limits. „Proc Natl Acad Sci U S a”. 99 (16), s. 10494–10499, 2002. DOI: 10.1073/pnas.142680199. PMID: 12097644.
Stams A, de Bok F, Plugge C, van Eekert M, Dolfing J, Schraa G. Exocellular electron transfer in anaerobic microbial communities. „Environ Microbiol”. 3 (8), s. 371–382, 2006. DOI: 10.1111/j.1462-2920.2006.00989.x. PMID: 16478444.
Yonath A, Bashan A. Ribosomal crystallography: initiation, peptide bond formation, and amino acid polymerization are hampered by antibiotics. „Annu Rev Microbiol”, s. 233–251, 2004. DOI: 10.1146/annurev.micro.58.030603.123822. PMID: 15487937.
Hagedorn S, Kaphammer B. Microbial biocatalysis in the generation of flavor and fragrance chemicals. „Annu. Rev. Microbiol.”, s. 773–800, 1994. DOI: 10.1146/annurev.mi.48.100194.004013. PMID: 7826026.
Neves LC, Miyamura TT, Moraes DA, Penna TC, Converti A. Biofiltration methods for the removal of phenolic residues. „Appl. Biochem. Biotechnol.”, s. 130–152, 2006. DOI: 10.1385/ABAB:129:1:130. PMID: 16915636.
Aronson AI, Shai Y. Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action. „FEMS Microbiol. Lett.”. 1 (195), s. 1–8, 2001. DOI: 10.1111/j.1574-6968.2001.tb10489.x. PMID: 11166987.
Bozsik A. Susceptibility of adult Coccinella septempunctata (Coleoptera: Coccinellidae) to insecticides with different modes of action. „Pest Manag Sci”. 7 (62), s. 651–654, 2006. DOI: 10.1002/ps.1221. PMID: 16649191.
Chattopadhyay A, Bhatnagar N, Bhatnagar R. Bacterial insecticidal toxins. „Crit Rev Microbiol”. 1 (30), s. 33–54, 2004. DOI: 10.1080/10408410490270712. PMID: 15116762.
Serres M, Gopal S, Nahum L, Liang P, Gaasterland T, Riley M. A functional update of the Escherichia coli K-12 genome. „Genome Biol”. 9 (2), s. RESEARCH0035, 2001. DOI: 10.1186/gb-2001-2-9-research0035. PMID: 11574054.
Almaas E, Kovács B, Vicsek T, Oltvai Z, Barabási A. Global organization of metabolic fluxes in the bacterium Escherichia coli. „Nature”. 6977 (427), s. 839–843, 2004. DOI: 10.1038/nature02289. PMID: 14985762.
Reed JL, Vo TD, Schilling CH, Palsson BO. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). „Genome Biol.”. 9 (4), s. R54, 2003. DOI: 10.1186/gb-2003-4-9-r54. PMID: 12952533.
Walsh G. Therapeutic insulins and their large-scale manufacture. „Appl Microbiol Biotechnol”. 2 (67), s. 151–159, 2005. DOI: 10.1007/s00253-004-1809-x. PMID: 15580495.
Graumann K, Premstaller A. Manufacturing of recombinant therapeutic proteins in microbial systems. „Biotechnol J”. 2 (1), s. 164–186, 2006. DOI: 10.1002/biot.200500051. PMID: 16892246.
Ruben E.R.E.ValasRuben E.R.E., Philip E.P.E.BournePhilip E.P.E., The origin of a derived superkingdom: how a gram-positive bacterium crossed the desert to become an archaeon, „Biology Direct”, 6, 2011, s. 16, DOI: 10.1186/1745-6150-6-16, ISSN1745-6150, PMID: 21356104, PMCID: PMC3056875 [dostęp 2021-03-16].
Emmanuel G.E.G.ReynaudEmmanuel G.E.G., Damien P.D.P.DevosDamien P.D.P., Transitional forms between the three domains of life and evolutionary implications, „Proceedings. Biological Sciences”, 278 (1723), 2011, s. 3321–3328, DOI: 10.1098/rspb.2011.1581, ISSN1471-2954, PMID: 21920985, PMCID: PMC3177640 [dostęp 2021-03-16].
GerhartG.DrewsGerhartG., The roots of microbiology and the influence of Ferdinand Cohn on microbiology of the 19th century, „FEMS Microbiology Reviews”, 24 (3), 2000, s. 225–249, DOI: 10.1111/j.1574-6976.2000.tb00540.x, ISSN0168-6445 [dostęp 2021-04-07].
M.M.StephensonM.M., L.H.L.H.SticklandL.H.L.H., Hydrogenase: The bacterial formation of methane by the reduction of one-carbon compounds by molecular hydrogen, „The Biochemical Journal”, 27 (5), 1933, s. 1517–1527, DOI: 10.1042/bj0271517, ISSN0264-6021, PMID: 16745264, PMCID: PMC1253060 [dostęp 2021-04-09].
Karl HeinzK.H.SchleiferKarl HeinzK.H., Classification of Bacteria and Archaea: past, present and future, „Systematic and Applied Microbiology”, 32 (8), 2009, s. 533–542, DOI: 10.1016/j.syapm.2009.09.002, ISSN1618-0984, PMID: 19819658 [dostęp 2022-02-26].
ThomasT.Cavalier-SmithThomasT., Ema E-YungE.E.Y.ChaoEma E-YungE.E.Y., Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria), „Protoplasma”, 257 (3), 2020, s. 621–753, DOI: 10.1007/s00709-019-01442-7, ISSN0033-183X, PMID: 31900730, PMCID: PMC7203096 [dostęp 2021-03-15].
Donovan H.D.H.ParksDonovan H.D.H. i inni, A complete domain-to-species taxonomy for Bacteria and Archaea, „Nature Biotechnology”, 38 (9), 2020, s. 1079–1086, DOI: 10.1038/s41587-020-0501-8, ISSN1546-1696, PMID: 32341564 [dostęp 2021-03-15].
Michael A.M.A.RuggieroMichael A.M.A. i inni, A Higher Level Classification of All Living Organisms, „PLOS One”, 10 (4), 2015, art. nr e0119248, DOI: 10.1371/journal.pone.0119248, PMID: 25923521, PMCID: PMC4418965 [dostęp 2021-03-11](ang.).
George M.G.M.GarrityGeorge M.G.M. i inni, Phylum BIII. Thermodesulfobacteria phy. nov.David R.D.R.Boone, Richard W.R.W.Castenholz, George M.G.M.Garrity (red.), New York, NY: Springer, 2001, s. 389–393, DOI: 10.1007/978-0-387-21609-6_20, ISBN 978-0-387-21609-6 [dostęp 2021-03-15](ang.).
B.P.B.P.HedlundB.P.B.P., J.J.J.J.GosinkJ.J.J.J., J.T.J.T.StaleyJ.T.J.T., Verrucomicrobia div. nov., a new division of the bacteria containing three new species of Prosthecobacter, „Antonie Van Leeuwenhoek”, 72 (1), 1997, s. 29–38, DOI: 10.1023/a:1000348616863, ISSN0003-6072, PMID: 9296261 [dostęp 2021-03-15].
AlexanderA.SieglAlexanderA. i inni, Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges, „The ISME journal”, 5 (1), 2011, s. 61–70, DOI: 10.1038/ismej.2010.95, ISSN1751-7362, PMID: 20613790, PMCID: PMC3105677 [dostęp 2021-03-16].
Damien P.D.P.DevosDamien P.D.P., Re-interpretation of the evidence for the PVC cell plan supports a Gram-negative origin, „Antonie Van Leeuwenhoek”, 105 (2), 2014, s. 271–274, DOI: 10.1007/s10482-013-0087-y, ISSN1572-9699, PMID: 24292377 [dostęp 2021-03-16].
Svetlana NS.N.DedyshSvetlana NS.N., Jaap S SinningheJ.S.S.DamstéJaap S SinningheJ.S.S., Acidobacteria, John Wiley & SonsJ.W.& S.Ltd (red.), Chichester, UK: John Wiley & Sons, Ltd, 22 stycznia 2018, s. 1–10, DOI: 10.1002/9780470015902.a0027685, ISBN 978-0-470-01590-2 [dostęp 2021-03-15](ang.).
CorentineC.AlauzetCorentineC., EstelleE.Jumas-BilakEstelleE., The Phylum Deferribacteres and the Genus Caldithrix, EugeneE.Rosenberg i inni red., Berlin, Heidelberg: Springer, 2014, s. 595–611, DOI: 10.1007/978-3-642-38954-2_162, ISBN 978-3-642-38954-2 [dostęp 2021-03-16](ang.).
MirjanaM.Rajilić-StojanovićMirjanaM., Willem M deW.M.VosWillem M deW.M., The first 1000 cultured species of the human gastrointestinal microbiota, „Fems Microbiology Reviews”, 38 (5), 2014, s. 996–1047, DOI: 10.1111/1574-6976.12075, ISSN0168-6445, PMID: 24861948, PMCID: PMC4262072 [dostęp 2021-03-15].
KojiK.MoriKojiK. i inni, Caldisericum exile gen. nov., sp. nov., an anaerobic, thermophilic, filamentous bacterium of a novel bacterial phylum, Caldiserica phyl. nov., originally called the candidate phylum OP5, and description of Caldisericaceae fam. nov., Caldisericales ord. nov. and Caldisericia classis nov, „International Journal of Systematic and Evolutionary Microbiology”, 59 (Pt 11), 2009, s. 2894–2898, DOI: 10.1099/ijs.0.010033-0, ISSN1466-5026, PMID: 19628600 [dostęp 2021-03-15].
Paula B. MatheusP.B.M.CarnevaliPaula B. MatheusP.B.M. i inni, Hydrogen-based metabolism as an ancestral trait in lineages sibling to the Cyanobacteria, „Nature Communications”, 10, 2019, DOI: 10.1038/s41467-018-08246-y, ISSN2041-1723, PMID: 30692531, PMCID: PMC6349859 [dostęp 2021-03-18].
GeorgeG.GarrityGeorgeG., David R.D.R.BooneDavid R.D.R., Richard W.R.W.CastenholzRichard W.R.W., Bergey’s Manual of Systematic Bacteriology, t. Volume One: The Archaea and the Deeply Branching and Phototrophic Bacteria, 2001. Brak numerów stron w książce
Woese CR., Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. „Proceedings of the National Academy of Sciences of the United States of America”. 74 (11), s. 5088–5090, 1977. DOI: 10.1073/pnas.74.11.5088. PMID: 270744. PMCID: PMC432104.
Whitman WB., Coleman DC., Wiebe WJ. Prokaryotes: the unseen majority. „Proceedings of the National Academy of Sciences of the United States of America”. 95 (12), s. 6578–6583, czerwiec 1998. PMID: 9618454.
Porter JR., van Leeuwenhoek A. Antony van Leeuwenhoek: tercentenary of his discovery of bacteria. „Bacteriological Reviews”. 40 (2), s. 260–269, czerwiec 1976. PMID: 786250.
O’Brien SJ., Goedert JJ. HIV causes AIDS: Koch’s postulates fulfilled. „Current Opinion in Immunology”. 8 (5), s. 613–618, październik 1996. PMID: 8902385.
Thurston AJ. Of blood, inflammation and gunshot wounds: the history of the control of sepsis. „The Australian and New Zealand Journal of Surgery”. 70 (12), s. 855–861, 2000. DOI: 10.1046/j.1440-1622.2000.01983.x. PMID: 11167573.
Schwartz RS., Ehrlich P. Paul Ehrlich’s magic bullets. „The New England Journal of Medicine”. 350 (11), s. 1079–1080, 2004. DOI: 10.1056/NEJMp048021. PMID: 15014180.
Ruben E.R.E.ValasRuben E.R.E., Philip E.P.E.BournePhilip E.P.E., The origin of a derived superkingdom: how a gram-positive bacterium crossed the desert to become an archaeon, „Biology Direct”, 6, 2011, s. 16, DOI: 10.1186/1745-6150-6-16, ISSN1745-6150, PMID: 21356104, PMCID: PMC3056875 [dostęp 2021-03-16].
Emmanuel G.E.G.ReynaudEmmanuel G.E.G., Damien P.D.P.DevosDamien P.D.P., Transitional forms between the three domains of life and evolutionary implications, „Proceedings. Biological Sciences”, 278 (1723), 2011, s. 3321–3328, DOI: 10.1098/rspb.2011.1581, ISSN1471-2954, PMID: 21920985, PMCID: PMC3177640 [dostęp 2021-03-16].
Douwes KE, Schmalzbauer E, Linde HJ, Reisberger EM i inni. Branched filaments no fungus, ovoid bodies no bacteria: Two unusual cases of mycetoma. „Journal of the American Academy of Dermatology”. 49 (2), s. 170–173, 2003. PMID: 12894113.
Kerfeld CA, Sawaya MR, Tanaka S, et al. Protein structures forming the shell of primitive bacterial organelles. „Science (journal)”. 5736 (309), s. 936–938, sierpień 2005. DOI: 10.1126/science.1113397. PMID: 16081736.
Yeates TO, Kerfeld CA, Heinhorst S, Cannon GC, Shively JM. Protein-based organelles in bacteria: carboxysomes and related microcompartments. „Nat. Rev. Microbiol.”, s. 681–691, sierpień 2008. DOI: 10.1038/nrmicro1913. PMID: 18679172.
Thanbichler M, Wang S, Shapiro L. The bacterial nucleoid: a highly organized and dynamic structure. „J Cell Biochem”. 3 (96), s. 506–521, 2005. DOI: 10.1002/jcb.20519. PMID: 15988757.
Walsby A. Gas vesicles. „Microbiol Rev”. 1 (58), s. 94–144, 1994. PMID: 8177173.
Yeo M, Chater K. The interplay of glycogen metabolism and differentiation provides an insight into the developmental biology of Streptomyces coelicolor. „Microbiology”. Pt 3 (151), s. 855–861, 2005. DOI: 10.1099/mic.0.27428-0. PMID: 15758231.
Brune DC. Isolation and characterization of sulfur globule proteins from Chromatium vinosum and Thiocapsa roseopersicina. „Arch Microbiol”. 163 (6), s. 391–399, 1995. DOI: 10.1007/BF00272127. PMID: 7575095.
D. Kadouri, E. Jurkevitch, Y. Okon, S. Castro-Sowinski. Ecological and agricultural significance of bacterial polyhydroxyalkanoates. „Crit Rev Microbiol”. 31 (2), s. 55–67, 2005. DOI: 10.1080/10408410590899228. PMID: 15986831.
Koch A. Bacterial wall as target for attack: past, present, and future research. „Clin Microbiol Rev”. 4 (16), s. 673–687, 2003. DOI: 10.1128/CMR.16.4.673-687.2003. PMID: 14557293.
Walsh F, Amyes S. Microbiology and drug resistance mechanisms of fully resistant pathogens. „Curr Opin Microbiol”. 5 (7), s. 439–444, 2004. DOI: 10.1016/j.mib.2004.08.007. PMID: 15451497.
Engelhardt H, Peters J. Structural research on surface layers: a focus on stability, surface layer homology domains, and surface layer-cell wall interactions. „J Struct Biol”. 2–3 (124), s. 276–302, 1998. DOI: 10.1006/jsbi.1998.4070. PMID: 10049812.
Beveridge T, Pouwels P, Sára M, Kotiranta A, Lounatmaa K, Kari K, Kerosuo E, Haapasalo M, Egelseer E, Schocher I, Sleytr U, Morelli L, Callegari M, Nomellini J, Bingle W, Smit J, Leibovitz E, Lemaire M, Miras I, Salamitou S, Béguin P, Ohayon H, Gounon P, Matuschek M, Koval S. Functions of S-layers. „FEMS Microbiol Rev”. 1–2 (20), s. 99–149, 1997. PMID: 9276929.
Beachey E. Bacterial adherence: adhesin-receptor interactions mediating the attachment of bacteria to mucosal surface. „J Infect Dis”. 3 (143), s. 325–345, 1981. PMID: 7014727.
Stokes R, Norris-Jones R, Brooks D, Beveridge T, Doxsee D, Thorson L. The glycan-rich outer layer of the cell wall of Mycobacterium tuberculosis acts as an antiphagocytic capsule limiting the association of the bacterium with macrophages. „Infect Immun”. 10 (72), s. 5676–5686, 2004. DOI: 10.1128/IAI.72.10.5676-5686.2004. PMID: 15385466.
Daffé M, Etienne G. The capsule of Mycobacterium tuberculosis and its implications for pathogenicity. „Tuber Lung Dis”. 3 (79), s. 153–169, 1999. DOI: 10.1054/tuld.1998.0200. PMID: 10656114.
Finlay B, Falkow S. Common themes in microbial pathogenicity revisited. „Microbiol Mol Biol Rev”. 2 (61), s. 136–169, 1997. PMID: 9184008.
Nicholson W, Fajardo-Cavazos P, Rebeil R, Slieman T, Riesenman P, Law J, Xue Y. Bacterial endospores and their significance in stress resistance. „Antonie Van Leeuwenhoek”. 1–4 (81), s. 27–32, 2002. DOI: 10.1023/A:1020561122764. PMID: 12448702.
Vreeland R, Rosenzweig W, Powers D. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. „Nature”. 6806 (407), s. 897–900, 2000. DOI: 10.1038/35038060. PMID: 11057666.
Cano R, Borucki M. Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. „Science”. 5213 (268), s. 1060–1064, 1995. DOI: 10.1126/science.7538699. PMID: 7538699.
Nicholson W, Schuerger A, Setlow P. The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight. „Mutat Res”. 1–2 (571), s. 249–264, 2005. PMID: 15748651.
Hatheway C. Toxigenic clostridia. „Clin Microbiol Rev”. 1 (3), s. 66–98, 1990. PMID: 2404569.
Nealson K. Post-Viking microbiology: new approaches, new data, new insights. „Orig Life Evol Biosph”. 1 (29), s. 73–93, 1999. DOI: 10.1023/A:1006515817767. PMID: 11536899.
Xu J. Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances. „Mol Ecol”. 7 (15), s. 1713–1731, 2006. DOI: 10.1111/j.1365-294X.2006.02882.x. PMID: 16689892.
Drake H, Daniel S, Küsel K, Matthies C, Kuhner C, Braus-Stromeyer S. Acetogenic bacteria: what are the in situ consequences of their diverse metabolic versatilities?. „Biofactors”. 1 (6), s. 13–24, 1997. DOI: 10.1002/biof.5520060103. PMID: 9233536.
Zehr J, Jenkins B, Short S, Steward G. Nitrogenase gene diversity and microbial community structure: a cross-system comparison. „Environ Microbiol”. 7 (5), s. 539–554, 2003. DOI: 10.1046/j.1462-2920.2003.00451.x. PMID: 12823187.
Koch A. Control of the bacterial cell cycle by cytoplasmic growth. „Crit Rev Microbiol”. 1 (28), s. 61–77, 2002. DOI: 10.1080/1040-840291046696. PMID: 12003041.
Thomson R, Bertram H. Laboratory diagnosis of central nervous system infections. „Infect Dis Clin North Am”. 4 (15), s. 1047–1071, 2001. DOI: 10.1016/S0891-5520(05)70186-0. PMID: 11780267.
Paerl H, Fulton R, Moisander P, Dyble J. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. „ScientificWorldJournal”, s. 76–113, 2001. DOI: 10.1100/tsw.2001.16. PMID: 12805693.
Prats C., López D., Giró A., Ferrer J., Valls J. Individual-based modelling of bacterial cultures to study the microscopic causes of the lag phase. „Journal of theoretical biology”. 4 (241), s. 939–953, sierpień 2006. DOI: 10.1016/j.jtbi.2006.01.029. PMID: 16524598.
Stewart EJ., Madden R., Paul G., Taddei F. Aging and death in an organism that reproduces by morphologically symmetric division. „PLoS biology”. 2 (3), s. e45, luty 2005. DOI: 10.1371/journal.pbio.0030045. PMID: 15685293.
Kooijman S, Auger P, Poggiale J, Kooi B. Quantitative steps in symbiogenesis and the evolution of homeostasis. „Biol Rev Camb Philos Soc”. 3 (78), s. 435–463, 2003. DOI: 10.1017/S1464793102006127. PMID: 14558592.
Prats C, López D, Giró A, Ferrer J, Valls J. Individual-based modelling of bacterial cultures to study the microscopic causes of the lag phase. „J Theor Biol”. 4 (241), s. 939–953, 2006. PMID: 16524598.
Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar H, Moran N, Hattori M. The 160-kilobase genome of the bacterial endosymbiont Carsonella. „Science”. 5797 (314), s. 267, 2006. DOI: 10.1126/science.1134196. PMID: 17038615.
Belfort M, Reaban ME, Coetzee T, Dalgaard JZ. Prokaryotic introns and inteins: a panoply of form and function. „J. Bacteriol.”. 14 (177), s. 3897–3903, 1995. PMID: 7608058.
Brüssow H, Canchaya C, Hardt W. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. „Microbiol Mol Biol Rev”. 3 (68), s. 560–602, 2004. DOI: 10.1128/MMBR.68.3.560-602.2004. PMID: 15353570.
Bickle TA, Krüger DH. Biology of DNA restriction. „Microbiol. Rev.”. 2 (57), s. 434–450, czerwiec 1993. PMID: 8336674.
Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. „Science (journal)”. 5819 (315), s. 1709–1712, marzec 2007. DOI: 10.1126/science.1138140. PMID: 17379808.
Brouns SJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. „Science (journal)”. 5891 (321), s. 960–964, sierpień 2008. DOI: 10.1126/science.1159689. PMID: 18703739.
Merz A, So M, Sheetz M. Pilus retraction powers bacterial twitching motility. „Nature”. 6800 (407), s. 98–102, 2000. DOI: 10.1038/35024105. PMID: 10993081.
Wu M, Roberts J, Kim S, Koch D, DeLisa M. Collective bacterial dynamics revealed using a three-dimensional population-scale defocused particle tracking technique. „Appl Environ Microbiol”. 7 (72), s. 4987–4994, 2006. DOI: 10.1128/AEM.00158-06. PMID: 16820497.
Lux R, Shi W. Chemotaxis-guided movements in bacteria. „Crit Rev Oral Biol Med”. 4 (15), s. 207–220, 2004. PMID: 15284186.
Frankel R, Bazylinski D, Johnson M, Taylor B. Magneto-aerotaxis in marine coccoid bacteria. „Biophys J”. 2 (73), s. 994–1000, 1997. DOI: 10.1016/S0006-3495(97)78132-3. PMID: 9251816.
Schopf J. Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic. „Proc Natl Acad Sci U S a”. 15 (91), s. 6735–6742, 1994. DOI: 10.1073/pnas.91.15.6735. PMID: 8041691.
Brown JR, Doolittle WF. Archaea and the prokaryote-to-eukaryote transition. „Microbiol. Mol. Biol. Rev.”. 4 (61), s. 456–502, 1997. PMID: 9409149.
Di Giulio M. The universal ancestor and the ancestor of bacteria were hyperthermophiles. „J Mol Evol”. 6 (57), s. 721–730, 2003. DOI: 10.1007/s00239-003-2522-6. PMID: 14745541.
Battistuzzi F, Feijao A, Hedges S. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. „BMC Evol Biol”, s. 44, 2004. DOI: 10.1186/1471-2148-4-44. PMID: 15535883.
Dyall S, Brown M, Johnson P. Ancient invasions: from endosymbionts to organelles. „Science”. 5668 (304), s. 253–257, 2004. DOI: 10.1126/science.1094884. PMID: 15073369.
Poole A, Penny D. Evaluating hypotheses for the origin of eukaryotes. „Bioessays”. 1 (29), s. 74–84, 2007. DOI: 10.1002/bies.20516. PMID: 17187354.
Ebersold HR, Cordier JL, Lüthy P. Bacterial mesosomes: method dependent artifacts. „Archives of Microbiology”. 1981. 130. s. 19–22. DOI: 10.1007/BF00527066. PMID: 6796029.
Thomson R, Bertram H. Laboratory diagnosis of central nervous system infections. „Infect Dis Clin North Am”. 4 (15), s. 1047–1071, 2001. DOI: 10.1016/S0891-5520(05)70186-0. PMID: 11780267.
Boucher Y, Douady CJ, Papke RT, Walsh DA, Boudreau ME, Nesbo CL, Case RJ, Doolittle WF. Lateral gene transfer and the origins of prokaryotic groups. „Annu Rev Genet”, s. 283–328, 2003. DOI: 10.1146/annurev.genet.37.050503.084247. PMID: 14616063.
Gary J.G.J.OlsenGary J.G.J., Carl R.C.R.WoeseCarl R.C.R., RossR.OverbeekRossR., The winds of (evolutionary) change: breathing new life into microbiology, „Journal of Bacteriology”, 176 (1), 1994, s. 1–6, PMID: 8282683, PMCID: PMC205007.
Oliver J. The viable but nonculturable state in bacteria. „J Microbiol”. 43 Spec No, s. 93–100, Feb 2005. PMID: 15765062.
Curtis T, Sloan W, Scannell J. Estimating prokaryotic diversity and its limits. „Proc Natl Acad Sci U S a”. 99 (16), s. 10494–10499, 2002. DOI: 10.1073/pnas.142680199. PMID: 12097644.
C.-E.A.C.E.A.WinslowC.-E.A.C.E.A. i inni, The Families and Genera of the Bacteria, „Journal of Bacteriology”, 2 (5), 1917, s. 505–566, ISSN0021-9193, PMID: 16558764, PMCID: PMC378727 [dostęp 2021-04-05].
M.M.StephensonM.M., L.H.L.H.SticklandL.H.L.H., Hydrogenase: The bacterial formation of methane by the reduction of one-carbon compounds by molecular hydrogen, „The Biochemical Journal”, 27 (5), 1933, s. 1517–1527, DOI: 10.1042/bj0271517, ISSN0264-6021, PMID: 16745264, PMCID: PMC1253060 [dostęp 2021-04-09].
R.E.R.E.BuchananR.E.R.E., Studies in the Nomenclature and Classification of the Bacteria, „Journal of Bacteriology”, 2 (2), 1917, s. 155–164, ISSN0021-9193, PMID: 16558735, PMCID: PMC378699 [dostęp 2022-02-26].
R.E.R.E.BuchananR.E.R.E., R.S.R.S.BreedR.S.R.S., L.F.L.F.RettgerL.F.L.F., A Diagramatic Summary of Various Bacterial Classifications, „Journal of Bacteriology”, 16 (6), 1928, s. 387–396, ISSN0021-9193, PMID: 16559348, PMCID: PMC375037 [dostęp 2022-02-26].
Karl HeinzK.H.SchleiferKarl HeinzK.H., Classification of Bacteria and Archaea: past, present and future, „Systematic and Applied Microbiology”, 32 (8), 2009, s. 533–542, DOI: 10.1016/j.syapm.2009.09.002, ISSN1618-0984, PMID: 19819658 [dostęp 2022-02-26].
Robert S.R.S.BreedRobert S.R.S., E.G.D.E.G.D.MurrayE.G.D.E.G.D., A. ParkerA.P.HitchensA. ParkerA.P., The Outline Classification Used in the Bergey Manual of Determinative Bacteriology, „Bacteriological Reviews”, 8 (4), 1944, s. 255–260, ISSN0005-3678, PMID: 16350097, PMCID: PMC440881 [dostęp 2022-02-26].
ThomasT.Cavalier-SmithThomasT., Ema E-YungE.E.Y.ChaoEma E-YungE.E.Y., Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria), „Protoplasma”, 257 (3), 2020, s. 621–753, DOI: 10.1007/s00709-019-01442-7, ISSN0033-183X, PMID: 31900730, PMCID: PMC7203096 [dostęp 2021-03-15].
ConradC.SchochConradC., NCBI Taxonomy, National Center for Biotechnology Information (US), 11 lutego 2020 [dostęp 2021-03-15](ang.). Brak numerów stron w książce
Donovan H.D.H.ParksDonovan H.D.H. i inni, A complete domain-to-species taxonomy for Bacteria and Archaea, „Nature Biotechnology”, 38 (9), 2020, s. 1079–1086, DOI: 10.1038/s41587-020-0501-8, ISSN1546-1696, PMID: 32341564 [dostęp 2021-03-15].
Michael A.M.A.RuggieroMichael A.M.A. i inni, A Higher Level Classification of All Living Organisms, „PLOS One”, 10 (4), 2015, art. nr e0119248, DOI: 10.1371/journal.pone.0119248, PMID: 25923521, PMCID: PMC4418965 [dostęp 2021-03-11](ang.).
Cavalier-Smith T. The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. „Int J Syst Evol Microbiol”. Pt 1 (52), s. 7–76, 2002. PMID: 11837318.
B.P.B.P.HedlundB.P.B.P., J.J.J.J.GosinkJ.J.J.J., J.T.J.T.StaleyJ.T.J.T., Verrucomicrobia div. nov., a new division of the bacteria containing three new species of Prosthecobacter, „Antonie Van Leeuwenhoek”, 72 (1), 1997, s. 29–38, DOI: 10.1023/a:1000348616863, ISSN0003-6072, PMID: 9296261 [dostęp 2021-03-15].
AlexanderA.SieglAlexanderA. i inni, Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges, „The ISME journal”, 5 (1), 2011, s. 61–70, DOI: 10.1038/ismej.2010.95, ISSN1751-7362, PMID: 20613790, PMCID: PMC3105677 [dostęp 2021-03-16].
Damien P.D.P.DevosDamien P.D.P., Re-interpretation of the evidence for the PVC cell plan supports a Gram-negative origin, „Antonie Van Leeuwenhoek”, 105 (2), 2014, s. 271–274, DOI: 10.1007/s10482-013-0087-y, ISSN1572-9699, PMID: 24292377 [dostęp 2021-03-16].
C RC.R.WoeseC RC.R., Bacterial evolution., „Microbiological Reviews”, 51 (2), 1987, s. 221–271, ISSN0146-0749, PMID: 2439888, PMCID: PMC373105 [dostęp 2021-03-15].
MirjanaM.Rajilić-StojanovićMirjanaM., Willem M deW.M.VosWillem M deW.M., The first 1000 cultured species of the human gastrointestinal microbiota, „Fems Microbiology Reviews”, 38 (5), 2014, s. 996–1047, DOI: 10.1111/1574-6976.12075, ISSN0168-6445, PMID: 24861948, PMCID: PMC4262072 [dostęp 2021-03-15].
KojiK.MoriKojiK. i inni, Caldisericum exile gen. nov., sp. nov., an anaerobic, thermophilic, filamentous bacterium of a novel bacterial phylum, Caldiserica phyl. nov., originally called the candidate phylum OP5, and description of Caldisericaceae fam. nov., Caldisericales ord. nov. and Caldisericia classis nov, „International Journal of Systematic and Evolutionary Microbiology”, 59 (Pt 11), 2009, s. 2894–2898, DOI: 10.1099/ijs.0.010033-0, ISSN1466-5026, PMID: 19628600 [dostęp 2021-03-15].
Radhey S.R.S.GuptaRadhey S.R.S., Protein Phylogenies and Signature Sequences: A Reappraisal of Evolutionary Relationships among Archaebacteria, Eubacteria, and Eukaryotes, „Microbiology and Molecular Biology Reviews”, 62 (4), 1998, s. 1435–1491, ISSN1092-2172, PMID: 9841678, PMCID: PMC98952 [dostęp 2021-03-15].
Paula B. MatheusP.B.M.CarnevaliPaula B. MatheusP.B.M. i inni, Hydrogen-based metabolism as an ancestral trait in lineages sibling to the Cyanobacteria, „Nature Communications”, 10, 2019, DOI: 10.1038/s41467-018-08246-y, ISSN2041-1723, PMID: 30692531, PMCID: PMC6349859 [dostęp 2021-03-18].
Stams A, de Bok F, Plugge C, van Eekert M, Dolfing J, Schraa G. Exocellular electron transfer in anaerobic microbial communities. „Environ Microbiol”. 3 (8), s. 371–382, 2006. DOI: 10.1111/j.1462-2920.2006.00989.x. PMID: 16478444.
L Saiman. Microbiology of early CF lung disease. „Paediatr Respir Rev.”. 5 Suppl A. s. S367–369. PMID: 14980298.
Yonath A, Bashan A. Ribosomal crystallography: initiation, peptide bond formation, and amino acid polymerization are hampered by antibiotics. „Annu Rev Microbiol”, s. 233–251, 2004. DOI: 10.1146/annurev.micro.58.030603.123822. PMID: 15487937.
Johnson M, Lucey J. Major technological advances and trends in cheese. „J Dairy Sci”. 4 (89), s. 1174–1178, 2006. PMID: 16537950.
Hagedorn S, Kaphammer B. Microbial biocatalysis in the generation of flavor and fragrance chemicals. „Annu. Rev. Microbiol.”, s. 773–800, 1994. DOI: 10.1146/annurev.mi.48.100194.004013. PMID: 7826026.
Neves LC, Miyamura TT, Moraes DA, Penna TC, Converti A. Biofiltration methods for the removal of phenolic residues. „Appl. Biochem. Biotechnol.”, s. 130–152, 2006. DOI: 10.1385/ABAB:129:1:130. PMID: 16915636.
Aronson AI, Shai Y. Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action. „FEMS Microbiol. Lett.”. 1 (195), s. 1–8, 2001. DOI: 10.1111/j.1574-6968.2001.tb10489.x. PMID: 11166987.
Bozsik A. Susceptibility of adult Coccinella septempunctata (Coleoptera: Coccinellidae) to insecticides with different modes of action. „Pest Manag Sci”. 7 (62), s. 651–654, 2006. DOI: 10.1002/ps.1221. PMID: 16649191.
Chattopadhyay A, Bhatnagar N, Bhatnagar R. Bacterial insecticidal toxins. „Crit Rev Microbiol”. 1 (30), s. 33–54, 2004. DOI: 10.1080/10408410490270712. PMID: 15116762.
Serres M, Gopal S, Nahum L, Liang P, Gaasterland T, Riley M. A functional update of the Escherichia coli K-12 genome. „Genome Biol”. 9 (2), s. RESEARCH0035, 2001. DOI: 10.1186/gb-2001-2-9-research0035. PMID: 11574054.
Almaas E, Kovács B, Vicsek T, Oltvai Z, Barabási A. Global organization of metabolic fluxes in the bacterium Escherichia coli. „Nature”. 6977 (427), s. 839–843, 2004. DOI: 10.1038/nature02289. PMID: 14985762.
Reed JL, Vo TD, Schilling CH, Palsson BO. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). „Genome Biol.”. 9 (4), s. R54, 2003. DOI: 10.1186/gb-2003-4-9-r54. PMID: 12952533.
Walsh G. Therapeutic insulins and their large-scale manufacture. „Appl Microbiol Biotechnol”. 2 (67), s. 151–159, 2005. DOI: 10.1007/s00253-004-1809-x. PMID: 15580495.
Graumann K, Premstaller A. Manufacturing of recombinant therapeutic proteins in microbial systems. „Biotechnol J”. 2 (1), s. 164–186, 2006. DOI: 10.1002/biot.200500051. PMID: 16892246.
MasashiM.YamaguchiMasashiM., Cedric O’DriscollC.O.’D.WormanCedric O’DriscollC.O.’D., Deep-sea microorganisms and the origin of the eukaryotic cell, „Japanese Journal of Protozoology”, 47 (1, 2), web.archive.org, 2014 [dostęp 2021-03-11] [zarchiwizowane z adresu 2017-08-09].
Olga M.O.M.LageOlga M.O.M. i inni, Planctomycetes, Thomas M.T.M.Schmidt (red.), Oxford: Academic Press, 2019, s. 614–626, ISBN 978-0-12-811737-8 [dostęp 2021-03-16](ang.).
MasashiM.YamaguchiMasashiM., Cedric O’DriscollC.O.’D.WormanCedric O’DriscollC.O.’D., Deep-sea microorganisms and the origin of the eukaryotic cell, „Japanese Journal of Protozoology”, 47 (1, 2), web.archive.org, 2014 [dostęp 2021-03-11] [zarchiwizowane z adresu 2017-08-09].
Svetlana NS.N.DedyshSvetlana NS.N., Jaap S SinningheJ.S.S.DamstéJaap S SinningheJ.S.S., Acidobacteria, John Wiley & SonsJ.W.& S.Ltd (red.), Chichester, UK: John Wiley & Sons, Ltd, 22 stycznia 2018, s. 1–10, DOI: 10.1002/9780470015902.a0027685, ISBN 978-0-470-01590-2 [dostęp 2021-03-15](ang.).
Ruben E.R.E.ValasRuben E.R.E., Philip E.P.E.BournePhilip E.P.E., The origin of a derived superkingdom: how a gram-positive bacterium crossed the desert to become an archaeon, „Biology Direct”, 6, 2011, s. 16, DOI: 10.1186/1745-6150-6-16, ISSN1745-6150, PMID: 21356104, PMCID: PMC3056875 [dostęp 2021-03-16].
Emmanuel G.E.G.ReynaudEmmanuel G.E.G., Damien P.D.P.DevosDamien P.D.P., Transitional forms between the three domains of life and evolutionary implications, „Proceedings. Biological Sciences”, 278 (1723), 2011, s. 3321–3328, DOI: 10.1098/rspb.2011.1581, ISSN1471-2954, PMID: 21920985, PMCID: PMC3177640 [dostęp 2021-03-16].
GerhartG.DrewsGerhartG., The roots of microbiology and the influence of Ferdinand Cohn on microbiology of the 19th century, „FEMS Microbiology Reviews”, 24 (3), 2000, s. 225–249, DOI: 10.1111/j.1574-6976.2000.tb00540.x, ISSN0168-6445 [dostęp 2021-04-07].
C.-E.A.C.E.A.WinslowC.-E.A.C.E.A. i inni, The Families and Genera of the Bacteria, „Journal of Bacteriology”, 2 (5), 1917, s. 505–566, ISSN0021-9193, PMID: 16558764, PMCID: PMC378727 [dostęp 2021-04-05].
M.M.StephensonM.M., L.H.L.H.SticklandL.H.L.H., Hydrogenase: The bacterial formation of methane by the reduction of one-carbon compounds by molecular hydrogen, „The Biochemical Journal”, 27 (5), 1933, s. 1517–1527, DOI: 10.1042/bj0271517, ISSN0264-6021, PMID: 16745264, PMCID: PMC1253060 [dostęp 2021-04-09].
R.E.R.E.BuchananR.E.R.E., Studies in the Nomenclature and Classification of the Bacteria, „Journal of Bacteriology”, 2 (2), 1917, s. 155–164, ISSN0021-9193, PMID: 16558735, PMCID: PMC378699 [dostęp 2022-02-26].
R.E.R.E.BuchananR.E.R.E., R.S.R.S.BreedR.S.R.S., L.F.L.F.RettgerL.F.L.F., A Diagramatic Summary of Various Bacterial Classifications, „Journal of Bacteriology”, 16 (6), 1928, s. 387–396, ISSN0021-9193, PMID: 16559348, PMCID: PMC375037 [dostęp 2022-02-26].
Karl HeinzK.H.SchleiferKarl HeinzK.H., Classification of Bacteria and Archaea: past, present and future, „Systematic and Applied Microbiology”, 32 (8), 2009, s. 533–542, DOI: 10.1016/j.syapm.2009.09.002, ISSN1618-0984, PMID: 19819658 [dostęp 2022-02-26].
Robert S.R.S.BreedRobert S.R.S., E.G.D.E.G.D.MurrayE.G.D.E.G.D., A. ParkerA.P.HitchensA. ParkerA.P., The Outline Classification Used in the Bergey Manual of Determinative Bacteriology, „Bacteriological Reviews”, 8 (4), 1944, s. 255–260, ISSN0005-3678, PMID: 16350097, PMCID: PMC440881 [dostęp 2022-02-26].
ThomasT.Cavalier-SmithThomasT., Ema E-YungE.E.Y.ChaoEma E-YungE.E.Y., Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria), „Protoplasma”, 257 (3), 2020, s. 621–753, DOI: 10.1007/s00709-019-01442-7, ISSN0033-183X, PMID: 31900730, PMCID: PMC7203096 [dostęp 2021-03-15].
Donovan H.D.H.ParksDonovan H.D.H. i inni, A complete domain-to-species taxonomy for Bacteria and Archaea, „Nature Biotechnology”, 38 (9), 2020, s. 1079–1086, DOI: 10.1038/s41587-020-0501-8, ISSN1546-1696, PMID: 32341564 [dostęp 2021-03-15].
B.P.B.P.HedlundB.P.B.P., J.J.J.J.GosinkJ.J.J.J., J.T.J.T.StaleyJ.T.J.T., Verrucomicrobia div. nov., a new division of the bacteria containing three new species of Prosthecobacter, „Antonie Van Leeuwenhoek”, 72 (1), 1997, s. 29–38, DOI: 10.1023/a:1000348616863, ISSN0003-6072, PMID: 9296261 [dostęp 2021-03-15].
AlexanderA.SieglAlexanderA. i inni, Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges, „The ISME journal”, 5 (1), 2011, s. 61–70, DOI: 10.1038/ismej.2010.95, ISSN1751-7362, PMID: 20613790, PMCID: PMC3105677 [dostęp 2021-03-16].
Damien P.D.P.DevosDamien P.D.P., Re-interpretation of the evidence for the PVC cell plan supports a Gram-negative origin, „Antonie Van Leeuwenhoek”, 105 (2), 2014, s. 271–274, DOI: 10.1007/s10482-013-0087-y, ISSN1572-9699, PMID: 24292377 [dostęp 2021-03-16].
MirjanaM.Rajilić-StojanovićMirjanaM., Willem M deW.M.VosWillem M deW.M., The first 1000 cultured species of the human gastrointestinal microbiota, „Fems Microbiology Reviews”, 38 (5), 2014, s. 996–1047, DOI: 10.1111/1574-6976.12075, ISSN0168-6445, PMID: 24861948, PMCID: PMC4262072 [dostęp 2021-03-15].
KojiK.MoriKojiK. i inni, Caldisericum exile gen. nov., sp. nov., an anaerobic, thermophilic, filamentous bacterium of a novel bacterial phylum, Caldiserica phyl. nov., originally called the candidate phylum OP5, and description of Caldisericaceae fam. nov., Caldisericales ord. nov. and Caldisericia classis nov, „International Journal of Systematic and Evolutionary Microbiology”, 59 (Pt 11), 2009, s. 2894–2898, DOI: 10.1099/ijs.0.010033-0, ISSN1466-5026, PMID: 19628600 [dostęp 2021-03-15].
Radhey S.R.S.GuptaRadhey S.R.S., Protein Phylogenies and Signature Sequences: A Reappraisal of Evolutionary Relationships among Archaebacteria, Eubacteria, and Eukaryotes, „Microbiology and Molecular Biology Reviews”, 62 (4), 1998, s. 1435–1491, ISSN1092-2172, PMID: 9841678, PMCID: PMC98952 [dostęp 2021-03-15].
Paula B. MatheusP.B.M.CarnevaliPaula B. MatheusP.B.M. i inni, Hydrogen-based metabolism as an ancestral trait in lineages sibling to the Cyanobacteria, „Nature Communications”, 10, 2019, DOI: 10.1038/s41467-018-08246-y, ISSN2041-1723, PMID: 30692531, PMCID: PMC6349859 [dostęp 2021-03-18].