Cykl kwasu cytrynowego (Polish Wikipedia)

Analysis of information sources in references of the Wikipedia article "Cykl kwasu cytrynowego" in Polish language version.

refsWebsite
Global rank Polish rank
4th place
7th place
2nd place
6th place
1st place
1st place
low place
low place

crick.ac.uk

doi.org

  • K.C. Usher, S.J. Remington, D.P. Martin, D.G. Drueckhammer. A very short hydrogen bond provides only moderate stabilization of an enzyme-inhibitor complex of citrate synthase. „Biochemistry”. 33 (25), s. 7753-7759, 1994. DOI: 10.1021/bi00191a002. PMID: 8011640. 
  • H. Lauble, C.D. Stout. Steric and conformational features of the aconitase mechanism. „Proteins”. 22 (1), s. 1-11, 1995. DOI: 10.1002/prot.340220102. PMID: 7675781. 
  • A.D. Mesecar, B.L. Stoddard, D.E. Koshland. Orbital steering in the catalytic power of enzymes: small structural changes with large catalytic consequences. „Science”. 277 (5323), s. 202-206, 1997. DOI: 10.1126/science.277.5323.202. PMID: 9211842. 
  • A.E. Fedøy, N. Yang, A. Martinez, H.K. Leiros i inni. Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium Desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability. „J Mol Biol”. 372 (1), s. 130-49, Sep 2007. DOI: 10.1016/j.jmb.2007.06.040. PMID: 17632124. 
  • J.E. Knapp, D. Carroll, J.E. Lawson, S.R. Ernst i inni. Expression, purification, and structural analysis of the trimeric form of the catalytic domain of the Escherichia coli dihydrolipoamide succinyltransferase. „Protein Sci”. 9 (1), s. 37-48, 2000. DOI: 10.1110/ps.9.1.37. PMID: 10739245. 
  • M.E. Fraser, M.N. James, W.A. Bridger, W.T. Wolodko. Phosphorylated and dephosphorylated structures of pig heart, GTP-specific succinyl-CoA synthetase. „J Mol Biol”. 299 (5), s. 1325-1339, 2000. DOI: 10.1006/jmbi.2000.3807. PMID: 10873456. 
  • D.O. Lambeth, K.N. Tews, S. Adkins, D. Frohlich i inni. Expression of two succinyl-CoA synthetases with different nucleotide specificities in mammalian tissues. „J Biol Chem”. 279 (35), s. 36621-4, Aug 2004. DOI: 10.1074/jbc.M406884200. PMID: 15234968. 
  • V. Yankovskaya, R. Horsefield, S. Törnroth, C. Luna-Chavez i inni. Architecture of succinate dehydrogenase and reactive oxygen species generation. „Science”. 299 (5607), s. 700-704, 2003. DOI: 10.1126/science.1079605. PMID: 12560550. 
  • K.S. Oyedotun, B.D. Lemire. The quaternary structure of the Saccharomyces cerevisiae succinate dehydrogenase. Homology modeling, cofactor docking, and molecular dynamics simulation studies. „J Biol Chem”. 279 (10), s. 9424-31, Mar 2004. DOI: 10.1074/jbc.M311876200. PMID: 14672929. 
  • R. Horsefield, V. Yankovskaya, G. Sexton, W. Whittingham i inni. Structural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase): a mechanism of electron transfer and proton conduction during ubiquinone reduction. „J Biol Chem”. 281 (11), s. 7309-16, Mar 2006. DOI: 10.1074/jbc.M508173200. PMID: 16407191. 
  • T. Weaver, M. Lees, V. Zaitsev, I. Zaitseva i inni. Crystal structures of native and recombinant yeast fumarase. „J Mol Biol”. 280 (3), s. 431-442, 1998. DOI: 10.1006/jmbi.1998.1862. PMID: 9665847. 
  • M. Mescam, K.C. Vinnakota, D.A. Beard. Identification of the catalytic mechanism and estimation of kinetic parameters for fumarase. „J Biol Chem”. 286 (24), s. 21100-9, Jun 2011. DOI: 10.1074/jbc.M110.214452. PMID: 21498518. 
  • M. Estévez, J. Skarda, J. Spencer, L. Banaszak i inni. X-ray crystallographic and kinetic correlation of a clinically observed human fumarase mutation. „Protein Sci”. 11 (6), s. 1552-7, Jun 2002. DOI: 10.1110/ps.0201502. PMID: 12021453. 
  • O. Ebenhöh, R. Heinrich. Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems. „Bull Math Biol”. 63 (1), s. 21-55, Jan 2001. DOI: 10.1006/bulm.2000.0197. PMID: 11146883. 
  • H. Kornberg, H. Krebs. Krebs and his trinity of cycles. „Nat Rev Mol Cell Biol”. 1 (3), s. 225-8, Dec 2000. DOI: 10.1038/35043073. PMID: 11252898. 
  • F.W. Leigh, H.A. Krebs. Sir Hans Adolf Krebs (1900-81), pioneer of modern medicine, architect of intermediary metabolism. „J Med Biogr”. 17 (3), s. 149-54, Aug 2009. DOI: 10.1258/jmb.2009.009032. PMID: 19723965. 
  • J.M. Buchanan, H. Krebs, F. Lipmann. Biochemistry during the life and times of Hans Krebs and Fritz Lipmann. „J Biol Chem”. 277 (37), s. 33531-6, Sep 2002. DOI: 10.1074/jbc.R200019200. PMID: 12070179. 

nih.gov

ncbi.nlm.nih.gov

  • K.C. Usher, S.J. Remington, D.P. Martin, D.G. Drueckhammer. A very short hydrogen bond provides only moderate stabilization of an enzyme-inhibitor complex of citrate synthase. „Biochemistry”. 33 (25), s. 7753-7759, 1994. DOI: 10.1021/bi00191a002. PMID: 8011640. 
  • H. Lauble, C.D. Stout. Steric and conformational features of the aconitase mechanism. „Proteins”. 22 (1), s. 1-11, 1995. DOI: 10.1002/prot.340220102. PMID: 7675781. 
  • A.H. Robbins, C.D. Stout. Structure of activated aconitase: formation of the [4Fe-4S] cluster in the crystal. „Proc Natl Acad Sci U S A”. 86 (10), s. 3639-43, May 1989. PMID: 2726740. 
  • H. Lauble, M.C. Kennedy, H. Beinert, C.D. Stout. Crystal structures of aconitase with isocitrate and nitroisocitrate bound. „Biochemistry”. 31 (10), s. 2735-48, Mar 1992. PMID: 1547214. 
  • A.D. Mesecar, B.L. Stoddard, D.E. Koshland. Orbital steering in the catalytic power of enzymes: small structural changes with large catalytic consequences. „Science”. 277 (5323), s. 202-206, 1997. DOI: 10.1126/science.277.5323.202. PMID: 9211842. 
  • A.E. Fedøy, N. Yang, A. Martinez, H.K. Leiros i inni. Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium Desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability. „J Mol Biol”. 372 (1), s. 130-49, Sep 2007. DOI: 10.1016/j.jmb.2007.06.040. PMID: 17632124. 
  • J.E. Knapp, D. Carroll, J.E. Lawson, S.R. Ernst i inni. Expression, purification, and structural analysis of the trimeric form of the catalytic domain of the Escherichia coli dihydrolipoamide succinyltransferase. „Protein Sci”. 9 (1), s. 37-48, 2000. DOI: 10.1110/ps.9.1.37. PMID: 10739245. 
  • V. Bunik, A.H. Westphal, A. de Kok. Kinetic properties of the 2-oxoglutarate dehydrogenase complex from Azotobacter vinelandii evidence for the formation of a precatalytic complex with 2-oxoglutarate. „Eur J Biochem”. 267 (12), s. 3583-91, Jun 2000. PMID: 10848975. 
  • M.E. Fraser, M.N. James, W.A. Bridger, W.T. Wolodko. Phosphorylated and dephosphorylated structures of pig heart, GTP-specific succinyl-CoA synthetase. „J Mol Biol”. 299 (5), s. 1325-1339, 2000. DOI: 10.1006/jmbi.2000.3807. PMID: 10873456. 
  • J.D. Johnson, J.G. Mehus, K. Tews, B.I. Milavetz i inni. Genetic evidence for the expression of ATP- and GTP-specific succinyl-CoA synthetases in multicellular eucaryotes. „J Biol Chem”. 273 (42), s. 27580-6, Oct 1998. PMID: 9765291. 
  • J.S. Nishimura. Succinyl-CoA synthetase structure-function relationships and other considerations. „Adv Enzymol Relat Areas Mol Biol”. 58, s. 141-72, 1986. PMID: 3521216. 
  • W.T. Wolodko, C.M. Kay, W.A. Bridger. Active enzyme sedimentation, sedimentation velocity, and sedimentation equilibrium studies of succinyl-CoA synthetases of porcine heart and Escherichia coli. „Biochemistry”. 25 (19), s. 5420-5, Sep 1986. PMID: 3535876. 
  • D.O. Lambeth, K.N. Tews, S. Adkins, D. Frohlich i inni. Expression of two succinyl-CoA synthetases with different nucleotide specificities in mammalian tissues. „J Biol Chem”. 279 (35), s. 36621-4, Aug 2004. DOI: 10.1074/jbc.M406884200. PMID: 15234968. 
  • V. Yankovskaya, R. Horsefield, S. Törnroth, C. Luna-Chavez i inni. Architecture of succinate dehydrogenase and reactive oxygen species generation. „Science”. 299 (5607), s. 700-704, 2003. DOI: 10.1126/science.1079605. PMID: 12560550. 
  • K.S. Oyedotun, B.D. Lemire. The quaternary structure of the Saccharomyces cerevisiae succinate dehydrogenase. Homology modeling, cofactor docking, and molecular dynamics simulation studies. „J Biol Chem”. 279 (10), s. 9424-31, Mar 2004. DOI: 10.1074/jbc.M311876200. PMID: 14672929. 
  • E. Tomitsuka, H. Hirawake, Y. Goto, M. Taniwaki i inni. Direct evidence for two distinct forms of the flavoprotein subunit of human mitochondrial complex II (succinate-ubiquinone reductase). „J Biochem”. 134 (2), s. 191-5, Aug 2003. PMID: 12966066. 
  • W.C. Kenney. The reaction of N-ethylmaleimide at the active site of succinate dehydrogenase. „J Biol Chem”. 250 (8), s. 3089-94, Apr 1975. PMID: 235539. 
  • R. Horsefield, V. Yankovskaya, G. Sexton, W. Whittingham i inni. Structural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase): a mechanism of electron transfer and proton conduction during ubiquinone reduction. „J Biol Chem”. 281 (11), s. 7309-16, Mar 2006. DOI: 10.1074/jbc.M508173200. PMID: 16407191. 
  • T. Weaver, M. Lees, V. Zaitsev, I. Zaitseva i inni. Crystal structures of native and recombinant yeast fumarase. „J Mol Biol”. 280 (3), s. 431-442, 1998. DOI: 10.1006/jmbi.1998.1862. PMID: 9665847. 
  • M. Mescam, K.C. Vinnakota, D.A. Beard. Identification of the catalytic mechanism and estimation of kinetic parameters for fumarase. „J Biol Chem”. 286 (24), s. 21100-9, Jun 2011. DOI: 10.1074/jbc.M110.214452. PMID: 21498518. 
  • M. Estévez, J. Skarda, J. Spencer, L. Banaszak i inni. X-ray crystallographic and kinetic correlation of a clinically observed human fumarase mutation. „Protein Sci”. 11 (6), s. 1552-7, Jun 2002. DOI: 10.1110/ps.0201502. PMID: 12021453. 
  • T. Genda, S. Watabe, H. Ozaki. Purification and characterization of fumarase from Corynebacterium glutamicum. „Biosci Biotechnol Biochem”. 70 (5), s. 1102-9, May 2006. PMID: 16717409. 
  • Tomita, T., Fushinobu, S., Kuzuyama, T., Nishiyama, M.: Structural basis for alteration of cofactor specificity of malate dehydrogenase from Thermus flavus. Structure summary page for the MMDB entry 88973, National Center for Biotechnology Information, 2005. [dostęp 2012-08-24].
  • P. Minárik, N. Tomásková, M. Kollárová, M. Antalík. Malate dehydrogenases--structure and function. „Gen Physiol Biophys”. 21 (3), s. 257-65, Sep 2002. PMID: 12537350. 
  • R.A. Musrati, M. Kollárová, N. Mernik, D. Mikulásová. Malate dehydrogenase: distribution, function and properties. „Gen Physiol Biophys”. 17 (3), s. 193-210, Sep 1998. PMID: 9834842. 
  • V.S. Lamzin, Z. Dauter, K.S. Wilson. Dehydrogenation through the looking-glass. „Nat Struct Biol”. 1 (5), s. 281-2, May 1994. PMID: 7664032. 
  • J.B. Robinson, P.A. Srere. Organization of Krebs tricarboxylic acid cycle enzymes in mitochondria. „J Biol Chem”. 260 (19), s. 10800-5, Sep 1985. PMID: 4030772. 
  • S.J. Barnes, P.D. Weitzman. Organization of citric acid cycle enzymes into a multienzyme cluster. „FEBS Lett”. 201 (2), s. 267-70, Jun 1986. PMID: 3086126. 
  • C.G. Mitchell. Identification of a multienzyme complex of the tricarboxylic acid cycle enzymes containing citrate synthase isoenzymes from Pseudomonas aeruginosa. „Biochem J”. 313 (Pt 3), s. 769-74, Feb 1996. PMID: 8611153. 
  • T.R. Mullinax, J.N. Mock, A.J. McEvily, J.H. Harrison. Regulation of mitochondrial malate dehydrogenase. Evidence for an allosteric citrate-binding site. „J Biol Chem”. 257 (22), s. 13233-9, Nov 1982. PMID: 7142142. 
  • J.L. Gelpí, A. Dordal, J. Montserrat, A. Mazo i inni. Kinetic studies of the regulation of mitochondrial malate dehydrogenase by citrate. „Biochem J”. 283 (Pt 1), s. 289-97, Apr 1992. PMID: 1567375. 
  • H. Gest. Evolutionary roots of the citric acid cycle in prokaryotes. „Biochem Soc Symp”. 54, s. 3-16, 1987. PMID: 3332996. 
  • E. Meléndez-Hevia, T.G. Waddell, M. Cascante. The puzzle of the Krebs citric acid cycle: assembling the pieces of chemically feasible reactions, and opportunism in the design of metabolic pathways during evolution. „J Mol Evol”. 43 (3), s. 293-303, Sep 1996. PMID: 8703096. 
  • J.E. Baldwin, H. Krebs. The evolution of metabolic cycles. „Nature”. 291 (5814), s. 381-2, Jun 1981. PMID: 7242661. 
  • O. Ebenhöh, R. Heinrich. Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems. „Bull Math Biol”. 63 (1), s. 21-55, Jan 2001. DOI: 10.1006/bulm.2000.0197. PMID: 11146883. 
  • H. Kornberg, H. Krebs. Krebs and his trinity of cycles. „Nat Rev Mol Cell Biol”. 1 (3), s. 225-8, Dec 2000. DOI: 10.1038/35043073. PMID: 11252898. 
  • F.W. Leigh, H.A. Krebs. Sir Hans Adolf Krebs (1900-81), pioneer of modern medicine, architect of intermediary metabolism. „J Med Biogr”. 17 (3), s. 149-54, Aug 2009. DOI: 10.1258/jmb.2009.009032. PMID: 19723965. 
  • K. Sulek, H.A. Krebs, F.A. Lipmann. [Nobel prize to Hans Adolf Krebs for discovery of the citric acid cycle and to Fritz Albert Lipmann in 1953 for discovery of coenzyme A and its importance in intermediary metabolism]. „Wiad Lek”. 21 (23), s. 2187-9, Dec 1968. PMID: 4884999. 
  • J.M. Buchanan, H. Krebs, F. Lipmann. Biochemistry during the life and times of Hans Krebs and Fritz Lipmann. „J Biol Chem”. 277 (37), s. 33531-6, Sep 2002. DOI: 10.1074/jbc.R200019200. PMID: 12070179. 
  • D.H. Williamson, R. Krebs. Sir Hans Krebs (1900-1981). „Biochem J”. 204 (1), s. 1-2, Apr 1982. PMID: 7052063. 

web.archive.org