K.C. Usher, S.J. Remington, D.P. Martin, D.G. Drueckhammer. A very short hydrogen bond provides only moderate stabilization of an enzyme-inhibitor complex of citrate synthase. „Biochemistry”. 33 (25), s. 7753-7759, 1994. DOI: 10.1021/bi00191a002. PMID: 8011640.
H. Lauble, C.D. Stout. Steric and conformational features of the aconitase mechanism. „Proteins”. 22 (1), s. 1-11, 1995. DOI: 10.1002/prot.340220102. PMID: 7675781.
A.D. Mesecar, B.L. Stoddard, D.E. Koshland. Orbital steering in the catalytic power of enzymes: small structural changes with large catalytic consequences. „Science”. 277 (5323), s. 202-206, 1997. DOI: 10.1126/science.277.5323.202. PMID: 9211842.
A.E. Fedøy, N. Yang, A. Martinez, H.K. Leiros i inni. Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium Desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability. „J Mol Biol”. 372 (1), s. 130-49, Sep 2007. DOI: 10.1016/j.jmb.2007.06.040. PMID: 17632124.
J.E. Knapp, D. Carroll, J.E. Lawson, S.R. Ernst i inni. Expression, purification, and structural analysis of the trimeric form of the catalytic domain of the Escherichia coli dihydrolipoamide succinyltransferase. „Protein Sci”. 9 (1), s. 37-48, 2000. DOI: 10.1110/ps.9.1.37. PMID: 10739245.
M.E. Fraser, M.N. James, W.A. Bridger, W.T. Wolodko. Phosphorylated and dephosphorylated structures of pig heart, GTP-specific succinyl-CoA synthetase. „J Mol Biol”. 299 (5), s. 1325-1339, 2000. DOI: 10.1006/jmbi.2000.3807. PMID: 10873456.
D.O. Lambeth, K.N. Tews, S. Adkins, D. Frohlich i inni. Expression of two succinyl-CoA synthetases with different nucleotide specificities in mammalian tissues. „J Biol Chem”. 279 (35), s. 36621-4, Aug 2004. DOI: 10.1074/jbc.M406884200. PMID: 15234968.
V. Yankovskaya, R. Horsefield, S. Törnroth, C. Luna-Chavez i inni. Architecture of succinate dehydrogenase and reactive oxygen species generation. „Science”. 299 (5607), s. 700-704, 2003. DOI: 10.1126/science.1079605. PMID: 12560550.
K.S. Oyedotun, B.D. Lemire. The quaternary structure of the Saccharomyces cerevisiae succinate dehydrogenase. Homology modeling, cofactor docking, and molecular dynamics simulation studies. „J Biol Chem”. 279 (10), s. 9424-31, Mar 2004. DOI: 10.1074/jbc.M311876200. PMID: 14672929.
R. Horsefield, V. Yankovskaya, G. Sexton, W. Whittingham i inni. Structural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase): a mechanism of electron transfer and proton conduction during ubiquinone reduction. „J Biol Chem”. 281 (11), s. 7309-16, Mar 2006. DOI: 10.1074/jbc.M508173200. PMID: 16407191.
T. Weaver, M. Lees, V. Zaitsev, I. Zaitseva i inni. Crystal structures of native and recombinant yeast fumarase. „J Mol Biol”. 280 (3), s. 431-442, 1998. DOI: 10.1006/jmbi.1998.1862. PMID: 9665847.
M. Mescam, K.C. Vinnakota, D.A. Beard. Identification of the catalytic mechanism and estimation of kinetic parameters for fumarase. „J Biol Chem”. 286 (24), s. 21100-9, Jun 2011. DOI: 10.1074/jbc.M110.214452. PMID: 21498518.
M. Estévez, J. Skarda, J. Spencer, L. Banaszak i inni. X-ray crystallographic and kinetic correlation of a clinically observed human fumarase mutation. „Protein Sci”. 11 (6), s. 1552-7, Jun 2002. DOI: 10.1110/ps.0201502. PMID: 12021453.
O. Ebenhöh, R. Heinrich. Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems. „Bull Math Biol”. 63 (1), s. 21-55, Jan 2001. DOI: 10.1006/bulm.2000.0197. PMID: 11146883.
H. Kornberg, H. Krebs. Krebs and his trinity of cycles. „Nat Rev Mol Cell Biol”. 1 (3), s. 225-8, Dec 2000. DOI: 10.1038/35043073. PMID: 11252898.
F.W. Leigh, H.A. Krebs. Sir Hans Adolf Krebs (1900-81), pioneer of modern medicine, architect of intermediary metabolism. „J Med Biogr”. 17 (3), s. 149-54, Aug 2009. DOI: 10.1258/jmb.2009.009032. PMID: 19723965.
J.M. Buchanan, H. Krebs, F. Lipmann. Biochemistry during the life and times of Hans Krebs and Fritz Lipmann. „J Biol Chem”. 277 (37), s. 33531-6, Sep 2002. DOI: 10.1074/jbc.R200019200. PMID: 12070179.
nih.gov
ncbi.nlm.nih.gov
K.C. Usher, S.J. Remington, D.P. Martin, D.G. Drueckhammer. A very short hydrogen bond provides only moderate stabilization of an enzyme-inhibitor complex of citrate synthase. „Biochemistry”. 33 (25), s. 7753-7759, 1994. DOI: 10.1021/bi00191a002. PMID: 8011640.
H. Lauble, C.D. Stout. Steric and conformational features of the aconitase mechanism. „Proteins”. 22 (1), s. 1-11, 1995. DOI: 10.1002/prot.340220102. PMID: 7675781.
A.H. Robbins, C.D. Stout. Structure of activated aconitase: formation of the [4Fe-4S] cluster in the crystal. „Proc Natl Acad Sci U S A”. 86 (10), s. 3639-43, May 1989. PMID: 2726740.
H. Lauble, M.C. Kennedy, H. Beinert, C.D. Stout. Crystal structures of aconitase with isocitrate and nitroisocitrate bound. „Biochemistry”. 31 (10), s. 2735-48, Mar 1992. PMID: 1547214.
A.D. Mesecar, B.L. Stoddard, D.E. Koshland. Orbital steering in the catalytic power of enzymes: small structural changes with large catalytic consequences. „Science”. 277 (5323), s. 202-206, 1997. DOI: 10.1126/science.277.5323.202. PMID: 9211842.
A.E. Fedøy, N. Yang, A. Martinez, H.K. Leiros i inni. Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium Desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability. „J Mol Biol”. 372 (1), s. 130-49, Sep 2007. DOI: 10.1016/j.jmb.2007.06.040. PMID: 17632124.
J.E. Knapp, D. Carroll, J.E. Lawson, S.R. Ernst i inni. Expression, purification, and structural analysis of the trimeric form of the catalytic domain of the Escherichia coli dihydrolipoamide succinyltransferase. „Protein Sci”. 9 (1), s. 37-48, 2000. DOI: 10.1110/ps.9.1.37. PMID: 10739245.
V. Bunik, A.H. Westphal, A. de Kok. Kinetic properties of the 2-oxoglutarate dehydrogenase complex from Azotobacter vinelandii evidence for the formation of a precatalytic complex with 2-oxoglutarate. „Eur J Biochem”. 267 (12), s. 3583-91, Jun 2000. PMID: 10848975.
M.E. Fraser, M.N. James, W.A. Bridger, W.T. Wolodko. Phosphorylated and dephosphorylated structures of pig heart, GTP-specific succinyl-CoA synthetase. „J Mol Biol”. 299 (5), s. 1325-1339, 2000. DOI: 10.1006/jmbi.2000.3807. PMID: 10873456.
J.D. Johnson, J.G. Mehus, K. Tews, B.I. Milavetz i inni. Genetic evidence for the expression of ATP- and GTP-specific succinyl-CoA synthetases in multicellular eucaryotes. „J Biol Chem”. 273 (42), s. 27580-6, Oct 1998. PMID: 9765291.
J.S. Nishimura. Succinyl-CoA synthetase structure-function relationships and other considerations. „Adv Enzymol Relat Areas Mol Biol”. 58, s. 141-72, 1986. PMID: 3521216.
W.T. Wolodko, C.M. Kay, W.A. Bridger. Active enzyme sedimentation, sedimentation velocity, and sedimentation equilibrium studies of succinyl-CoA synthetases of porcine heart and Escherichia coli. „Biochemistry”. 25 (19), s. 5420-5, Sep 1986. PMID: 3535876.
D.O. Lambeth, K.N. Tews, S. Adkins, D. Frohlich i inni. Expression of two succinyl-CoA synthetases with different nucleotide specificities in mammalian tissues. „J Biol Chem”. 279 (35), s. 36621-4, Aug 2004. DOI: 10.1074/jbc.M406884200. PMID: 15234968.
V. Yankovskaya, R. Horsefield, S. Törnroth, C. Luna-Chavez i inni. Architecture of succinate dehydrogenase and reactive oxygen species generation. „Science”. 299 (5607), s. 700-704, 2003. DOI: 10.1126/science.1079605. PMID: 12560550.
K.S. Oyedotun, B.D. Lemire. The quaternary structure of the Saccharomyces cerevisiae succinate dehydrogenase. Homology modeling, cofactor docking, and molecular dynamics simulation studies. „J Biol Chem”. 279 (10), s. 9424-31, Mar 2004. DOI: 10.1074/jbc.M311876200. PMID: 14672929.
E. Tomitsuka, H. Hirawake, Y. Goto, M. Taniwaki i inni. Direct evidence for two distinct forms of the flavoprotein subunit of human mitochondrial complex II (succinate-ubiquinone reductase). „J Biochem”. 134 (2), s. 191-5, Aug 2003. PMID: 12966066.
W.C. Kenney. The reaction of N-ethylmaleimide at the active site of succinate dehydrogenase. „J Biol Chem”. 250 (8), s. 3089-94, Apr 1975. PMID: 235539.
R. Horsefield, V. Yankovskaya, G. Sexton, W. Whittingham i inni. Structural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase): a mechanism of electron transfer and proton conduction during ubiquinone reduction. „J Biol Chem”. 281 (11), s. 7309-16, Mar 2006. DOI: 10.1074/jbc.M508173200. PMID: 16407191.
T. Weaver, M. Lees, V. Zaitsev, I. Zaitseva i inni. Crystal structures of native and recombinant yeast fumarase. „J Mol Biol”. 280 (3), s. 431-442, 1998. DOI: 10.1006/jmbi.1998.1862. PMID: 9665847.
M. Mescam, K.C. Vinnakota, D.A. Beard. Identification of the catalytic mechanism and estimation of kinetic parameters for fumarase. „J Biol Chem”. 286 (24), s. 21100-9, Jun 2011. DOI: 10.1074/jbc.M110.214452. PMID: 21498518.
M. Estévez, J. Skarda, J. Spencer, L. Banaszak i inni. X-ray crystallographic and kinetic correlation of a clinically observed human fumarase mutation. „Protein Sci”. 11 (6), s. 1552-7, Jun 2002. DOI: 10.1110/ps.0201502. PMID: 12021453.
T. Genda, S. Watabe, H. Ozaki. Purification and characterization of fumarase from Corynebacterium glutamicum. „Biosci Biotechnol Biochem”. 70 (5), s. 1102-9, May 2006. PMID: 16717409.
P. Minárik, N. Tomásková, M. Kollárová, M. Antalík. Malate dehydrogenases--structure and function. „Gen Physiol Biophys”. 21 (3), s. 257-65, Sep 2002. PMID: 12537350.
R.A. Musrati, M. Kollárová, N. Mernik, D. Mikulásová. Malate dehydrogenase: distribution, function and properties. „Gen Physiol Biophys”. 17 (3), s. 193-210, Sep 1998. PMID: 9834842.
V.S. Lamzin, Z. Dauter, K.S. Wilson. Dehydrogenation through the looking-glass. „Nat Struct Biol”. 1 (5), s. 281-2, May 1994. PMID: 7664032.
J.B. Robinson, P.A. Srere. Organization of Krebs tricarboxylic acid cycle enzymes in mitochondria. „J Biol Chem”. 260 (19), s. 10800-5, Sep 1985. PMID: 4030772.
S.J. Barnes, P.D. Weitzman. Organization of citric acid cycle enzymes into a multienzyme cluster. „FEBS Lett”. 201 (2), s. 267-70, Jun 1986. PMID: 3086126.
C.G. Mitchell. Identification of a multienzyme complex of the tricarboxylic acid cycle enzymes containing citrate synthase isoenzymes from Pseudomonas aeruginosa. „Biochem J”. 313 (Pt 3), s. 769-74, Feb 1996. PMID: 8611153.
T.R. Mullinax, J.N. Mock, A.J. McEvily, J.H. Harrison. Regulation of mitochondrial malate dehydrogenase. Evidence for an allosteric citrate-binding site. „J Biol Chem”. 257 (22), s. 13233-9, Nov 1982. PMID: 7142142.
J.L. Gelpí, A. Dordal, J. Montserrat, A. Mazo i inni. Kinetic studies of the regulation of mitochondrial malate dehydrogenase by citrate. „Biochem J”. 283 (Pt 1), s. 289-97, Apr 1992. PMID: 1567375.
H. Gest. Evolutionary roots of the citric acid cycle in prokaryotes. „Biochem Soc Symp”. 54, s. 3-16, 1987. PMID: 3332996.
E. Meléndez-Hevia, T.G. Waddell, M. Cascante. The puzzle of the Krebs citric acid cycle: assembling the pieces of chemically feasible reactions, and opportunism in the design of metabolic pathways during evolution. „J Mol Evol”. 43 (3), s. 293-303, Sep 1996. PMID: 8703096.
J.E. Baldwin, H. Krebs. The evolution of metabolic cycles. „Nature”. 291 (5814), s. 381-2, Jun 1981. PMID: 7242661.
O. Ebenhöh, R. Heinrich. Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems. „Bull Math Biol”. 63 (1), s. 21-55, Jan 2001. DOI: 10.1006/bulm.2000.0197. PMID: 11146883.
H. Kornberg, H. Krebs. Krebs and his trinity of cycles. „Nat Rev Mol Cell Biol”. 1 (3), s. 225-8, Dec 2000. DOI: 10.1038/35043073. PMID: 11252898.
F.W. Leigh, H.A. Krebs. Sir Hans Adolf Krebs (1900-81), pioneer of modern medicine, architect of intermediary metabolism. „J Med Biogr”. 17 (3), s. 149-54, Aug 2009. DOI: 10.1258/jmb.2009.009032. PMID: 19723965.
K. Sulek, H.A. Krebs, F.A. Lipmann. [Nobel prize to Hans Adolf Krebs for discovery of the citric acid cycle and to Fritz Albert Lipmann in 1953 for discovery of coenzyme A and its importance in intermediary metabolism]. „Wiad Lek”. 21 (23), s. 2187-9, Dec 1968. PMID: 4884999.
J.M. Buchanan, H. Krebs, F. Lipmann. Biochemistry during the life and times of Hans Krebs and Fritz Lipmann. „J Biol Chem”. 277 (37), s. 33531-6, Sep 2002. DOI: 10.1074/jbc.R200019200. PMID: 12070179.
D.H. Williamson, R. Krebs. Sir Hans Krebs (1900-1981). „Biochem J”. 204 (1), s. 1-2, Apr 1982. PMID: 7052063.