Che-LunCh.L.HungChe-LunCh.L., Chi-ChunCh.Ch.ChenChi-ChunCh.Ch., Computational Approaches for Drug Discovery, „Drug Development Research”, 75 (6), 2014, s. 412–418, DOI: 10.1002/ddr.21222, ISSN0272-4391 [dostęp 2022-01-16].
Daniel E.D.E.KoshlandDaniel E.D.E., The Key–Lock Theory and the Induced Fit Theory, „Angewandte Chemie International Edition in English”, 33 (2324), 1995, s. 2375–2378, DOI: 10.1002/anie.199423751, ISSN0570-0833 [dostęp 2022-01-16].
Xuan-YuX.Y.MengXuan-YuX.Y. i inni, Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery, „Current Computer Aided-Drug Design”, 7 (2), 2011, s. 146–157, DOI: 10.2174/157340911795677602, ISSN1573-4099 [dostęp 2022-01-16].
Sheng-YouS.Y.HuangSheng-YouS.Y., XiaoqinX.ZouXiaoqinX., Advances and Challenges in Protein-Ligand Docking, „International Journal of Molecular Sciences”, 11 (8), 2010, s. 3016–3034, DOI: 10.3390/ijms11083016, ISSN1422-0067 [dostęp 2022-01-16].
StefanoS.ForliStefanoS., Arthur J.A.J.OlsonArthur J.A.J., A Force Field with Discrete Displaceable Waters and Desolvation Entropy for Hydrated Ligand Docking, „Journal of Medicinal Chemistry”, 55 (2), 2012, s. 623–638, DOI: 10.1021/jm2005145, ISSN0022-2623 [dostęp 2022-01-16].
Marley L.M.L.SamwaysMarley L.M.L. i inni, Water molecules at protein–drug interfaces: computational prediction and analysis methods, „Chemical Society Reviews”, 50 (16), 2021, s. 9104–9120, DOI: 10.1039/d0cs00151a, ISSN0306-0012 [dostęp 2022-01-16].
Ligand-Protein Docking with Water Molecules, DOI: 10.1021/ci700285e.s002 [dostęp 2022-01-16]. Brak numerów stron w książce
Prediction of Ordered Water Molecules in Protein Binding Sites from Molecular Dynamics Simulations: The Impact of Ligand Binding on Hydration Networks, DOI: 10.1021/acs.jcim.7b00520.s001 [dostęp 2022-01-16]. Brak numerów stron w książce
Gregory A.G.A.RossGregory A.G.A., Garrett M.G.M.MorrisGarrett M.G.M., Philip C.P.C.BigginPhilip C.P.C., Rapid and Accurate Prediction and Scoring of Water Molecules in Protein Binding Sites, „PLoS ONE”, 7 (3), 2012, e32036, DOI: 10.1371/journal.pone.0032036, ISSN1932-6203 [dostęp 2022-01-16].
AlessioA.AmadasiAlessioA. i inni, Robust Classification of “Relevant” Water Molecules in Putative Protein Binding Sites, „Journal of Medicinal Chemistry”, 51 (4), 2008, s. 1063–1067, DOI: 10.1021/jm701023h, ISSN0022-2623 [dostęp 2022-01-16].
MaximM.TotrovMaximM., RubenR.AbagyanRubenR., Flexible ligand docking to multiple receptor conformations: a practical alternative, „Current Opinion in Structural Biology”, 18 (2), 2008, s. 178–184, DOI: 10.1016/j.sbi.2008.01.004, ISSN0959-440X [dostęp 2022-01-16].
ChandrikaCh.B-RaoChandrikaCh., JyothiJ.SubramanianJyothiJ., Somesh D.S.D.SharmaSomesh D.S.D., Managing protein flexibility in docking and its applications, „Drug Discovery Today”, 14 (7–8), 2009, s. 394–400, DOI: 10.1016/j.drudis.2009.01.003, ISSN1359-6446 [dostęp 2022-01-16].
PietroP.CozziniPietroP., ChemInform Abstract: Target Flexibility: An Emerging Consideration in Drug Discovery and Design, „ChemInform”, 40 (3), 2009, DOI: 10.1002/chin.200903235, ISSN0931-7597 [dostęp 2022-01-16].
Sheng-YouS.Y.HuangSheng-YouS.Y., XiaoqinX.ZouXiaoqinX., Ensemble docking of multiple protein structures: Considering protein structural variations in molecular docking, „Proteins: Structure, Function, and Bioinformatics”, 66 (2), 2006, s. 399–421, DOI: 10.1002/prot.21214, ISSN0887-3585 [dostęp 2022-01-16].
JanuszJ.BujnickiJanuszJ., Faculty Opinions recommendation of Highly accurate protein structure prediction with AlphaFold., „Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature”, 2021, DOI: 10.3410/f.740477161.793587947 [dostęp 2022-01-16].
JanuszJ.BujnickiJanuszJ., Faculty Opinions recommendation of Highly accurate protein structure prediction for the human proteome., „Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature”, 2021, DOI: 10.3410/f.740510745.793587948 [dostęp 2022-01-16].
What is Density Functional Theory?, Hoboken, NJ, USA: John Wiley & Sons, Inc., s. 1–33, DOI: 10.1002/9780470447710.ch1 [dostęp 2022-01-16].
Stephen JS.J.CampbellStephen JS.J. i inni, Ligand binding: functional site location, similarity and docking, „Current Opinion in Structural Biology”, 13 (3), 2003, s. 389–395, DOI: 10.1016/s0959-440x(03)00075-7, ISSN0959-440X [dostęp 2022-01-16].
Zhong-RuZ.R.XieZhong-RuZ.R., Ming-JingM.J.HwangMing-JingM.J., Methods for Predicting Protein–Ligand Binding Sites, New York, NY: Springer New York, 3 września 2014, s. 383–398, DOI: 10.1007/978-1-4939-1465-4_17, ISBN 978-1-4939-1464-7 [dostęp 2022-01-16].
YangY.LiuYangY. i inni, CB-Dock: a web server for cavity detection-guided protein–ligand blind docking, „Acta Pharmacologica Sinica”, 41 (1), 2019, s. 138–144, DOI: 10.1038/s41401-019-0228-6, ISSN1671-4083 [dostęp 2022-01-16].
Mark N.M.N.WassMark N.M.N., Lawrence A.L.A.KelleyLawrence A.L.A., Michael J.E.M.J.E.SternbergMichael J.E.M.J.E., 3DLigandSite: predicting ligand-binding sites using similar structures, „Nucleic Acids Research”, 38 (suppl_2), 2010, W469–W473, DOI: 10.1093/nar/gkq406, ISSN1362-4962 [dostęp 2022-01-16].
Jonathan C.J.C.FullerJonathan C.J.C., Nicholas J.N.J.BurgoyneNicholas J.N.J., Richard M.R.M.JacksonRichard M.R.M., Predicting druggable binding sites at the protein–protein interface, „Drug Discovery Today”, 14 (3–4), 2009, s. 155–161, DOI: 10.1016/j.drudis.2008.10.009, ISSN1359-6446 [dostęp 2022-01-16].
B.B.SandakB.B., Efficient Computational Algorithms for Fast Electrostatics and Molecular Docking, Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, s. 411–441, DOI: 10.1007/978-3-642-56080-4_17, ISBN 978-3-540-43756-7 [dostęp 2022-01-16].
R.R.RohsR.R., Molecular flexibility in ab initio drug docking to DNA: binding-site and binding-mode transitions in all-atom Monte Carlo simulations, „Nucleic Acids Research”, 33 (22), 2005, s. 7048–7057, DOI: 10.1093/nar/gki1008, ISSN0305-1048 [dostęp 2022-01-16].
OliverO.KorbOliverO., ThomasT.StützleThomasT., Thomas E.T.E.ExnerThomas E.T.E., PLANTS: Application of Ant Colony Optimization to Structure-Based Drug Design, Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, s. 247–258, DOI: 10.1007/11839088_22, ISBN 978-3-540-38482-3 [dostęp 2022-01-16].
JinJ.LiJinJ., AilingA.FuAilingA., LeL.ZhangLeL., An Overview of Scoring Functions Used for Protein–Ligand Interactions in Molecular Docking, „Interdisciplinary Sciences: Computational Life Sciences”, 11 (2), 2019, s. 320–328, DOI: 10.1007/s12539-019-00327-w, ISSN1913-2751 [dostęp 2022-01-16].
RenxiaoR.WangRenxiaoR., YipinY.LuYipinY., ShaomengS.WangShaomengS., Comparative Evaluation of 11 Scoring Functions for Molecular Docking, „Journal of Medicinal Chemistry”, 46 (12), 2003, s. 2287–2303, DOI: 10.1021/jm0203783, ISSN0022-2623 [dostęp 2022-01-16].
MaciejM.WójcikowskiMaciejM., PawelP.SiedleckiPawelP., Pedro J.P.J.BallesterPedro J.P.J., Building Machine-Learning Scoring Functions for Structure-Based Prediction of Intermolecular Binding Affinity, New York, NY: Springer New York, 2019, s. 1–12, DOI: 10.1007/978-1-4939-9752-7_1, ISBN 978-1-4939-9751-0 [dostęp 2022-01-16].
Alexander D.A.D.MackerellAlexander D.A.D., Empirical force fields for biological macromolecules: Overview and issues, „Journal of Computational Chemistry”, 25 (13), 2004, s. 1584–1604, DOI: 10.1002/jcc.20082, ISSN0192-8651 [dostęp 2022-01-16].
Jay W.J.W.PonderJay W.J.W., David A.D.A.CaseDavid A.D.A., Force Fields for Protein Simulations, Elsevier, 2003, s. 27–85, DOI: 10.1016/s0065-3233(03)66002-x [dostęp 2022-01-16].
ChaoCh.ShenChaoCh. i inni, From machine learning to deep learning: Advances in scoring functions for protein–ligand docking, „WIREs Computational Molecular Science”, 10 (1), 2019, DOI: 10.1002/wcms.1429, ISSN1759-0876 [dostęp 2022-01-16].
HongjianH.LiHongjianH. i inni, Improving AutoDock Vina Using Random Forest: The Growing Accuracy of Binding Affinity Prediction by the Effective Exploitation of Larger Data Sets, „Molecular Informatics”, 34 (2–3), 2015, s. 115–126, DOI: 10.1002/minf.201400132, ISSN1868-1743 [dostęp 2022-01-16].
Jacob D.J.D.DurrantJacob D.J.D., J. AndrewJ.A.McCammonJ. AndrewJ.A., NNScore: A Neural-Network-Based Scoring Function for the Characterization of Protein–Ligand Complexes, „Journal of Chemical Information and Modeling”, 50 (10), 2010, s. 1865–1871, DOI: 10.1021/ci100244v, ISSN1549-9596 [dostęp 2022-01-16].
Yu-ChianY.Ch.ChenYu-ChianY.Ch., Erratum: Beware of Docking!, „Trends in Pharmacological Sciences”, 36 (9), 2015, s. 617, DOI: 10.1016/j.tips.2015.01.004, ISSN0165-6147 [dostęp 2022-01-16].
Cosolvent and Dynamic Effects in Binding Pocket Search by Docking Simulations, DOI: 10.1021/acs.jcim.1c00924.s001 [dostęp 2022-01-16]. Brak numerów stron w książce
Nataraj S.N.S.PagadalaNataraj S.N.S., KhajamohiddinK.SyedKhajamohiddinK., JackJ.TuszynskiJackJ., Software for molecular docking: a review, „Biophysical Reviews”, 9 (2), 2017, s. 91–102, DOI: 10.1007/s12551-016-0247-1, ISSN1867-2450 [dostęp 2022-01-16].
Eric D.E.D.BoittierEric D.E.D. i inni, Assessing Molecular Docking Tools to Guide Targeted Drug Discovery of CD38 Inhibitors, „International Journal of Molecular Sciences”, 21 (15), 2020, s. 5183, DOI: 10.3390/ijms21155183, ISSN1422-0067 [dostęp 2022-01-16].
Juan PabloJ.P.ArconJuan PabloJ.P. i inni, AutoDock Bias: improving binding mode prediction and virtual screening using known protein–ligand interactions, „Bioinformatics”, 35 (19), 2019, s. 3836–3838, DOI: 10.1093/bioinformatics/btz152, ISSN1367-4803 [dostęp 2022-01-16].
LeonardoL.Solis-VasquezLeonardoL. i inni, Benchmarking the performance of irregular computations in AutoDock-GPU molecular docking, „Parallel Computing”, 109, 2022, s. 102861, DOI: 10.1016/j.parco.2021.102861, ISSN0167-8191 [dostęp 2022-01-16].
XubenX.HouXubenX. i inni, How to Improve Docking Accuracy of AutoDock4.2: A Case Study Using Different Electrostatic Potentials, „Journal of Chemical Information and Modeling”, 53 (1), 2013, s. 188–200, DOI: 10.1021/ci300417y, ISSN1549-9596 [dostęp 2022-01-16].
OlegO.TrottOlegO., Arthur J.A.J.OlsonArthur J.A.J., AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, „Journal of Computational Chemistry”, 2009, NA–NA, DOI: 10.1002/jcc.21334, ISSN0192-8651 [dostęp 2022-01-16].
VsevolodV.TanchukVsevolodV. i inni, A New Scoring Function for Molecular Docking Based on AutoDock and AutoDock Vina, „Current Drug Discovery Technologies”, 12 (3), 2015, s. 170–178, DOI: 10.2174/1570163812666150825110208, ISSN1570-1638 [dostęp 2022-01-16].
Demetri T.D.T.MoustakasDemetri T.D.T. i inni, Development and validation of a modular, extensible docking program: DOCK 5, „Journal of Computer-Aided Molecular Design”, 20 (10–11), 2006, s. 601–619, DOI: 10.1007/s10822-006-9060-4, ISSN0920-654X [dostęp 2022-01-16].
Glide: A New Approach for Rapid, Accurate Docking and Scoring. I. Method and Assessment of Docking Accuracy, DOI: 10.1021/jm0306430.s001 [dostęp 2022-01-16]. Brak numerów stron w książce
Marcel L.M.L.VerdonkMarcel L.M.L. i inni, Improved protein-ligand docking using GOLD, „Proteins: Structure, Function, and Bioinformatics”, 52 (4), 2003, s. 609–623, DOI: 10.1002/prot.10465, ISSN0887-3585 [dostęp 2022-01-16].
BerndB.KramerBerndB., MatthiasM.RareyMatthiasM., ThomasT.LengauerThomasT., Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking, „Proteins: Structure, Function, and Genetics”, 37 (2), 1999, s. 228–241, DOI: 10.1002/(sici)1097-0134(19991101)37:2<228::aid-prot8>3.0.co;2-8, ISSN0887-3585 [dostęp 2022-01-16].
VeronicaV.SalmasoVeronicaV., StefanoS.MoroStefanoS., Bridging Molecular Docking to Molecular Dynamics in Exploring Ligand-Protein Recognition Process: An Overview, „Frontiers in Pharmacology”, 9, 2018, DOI: 10.3389/fphar.2018.00923, ISSN1663-9812 [dostęp 2022-01-16].
HernanH.AlonsoHernanH., Andrey A.A.A.BliznyukAndrey A.A.A., Jill E.J.E.GreadyJill E.J.E., Combining Docking and Molecular Dynamic Simulations in Drug Design, „ChemInform”, 37 (45), 2006, DOI: 10.1002/chin.200645280, ISSN0931-7597 [dostęp 2022-01-16].
Che-LunCh.L.HungChe-LunCh.L., Chi-ChunCh.Ch.ChenChi-ChunCh.Ch., Computational Approaches for Drug Discovery, „Drug Development Research”, 75 (6), 2014, s. 412–418, DOI: 10.1002/ddr.21222, ISSN0272-4391 [dostęp 2022-01-16].
Daniel E.D.E.KoshlandDaniel E.D.E., The Key–Lock Theory and the Induced Fit Theory, „Angewandte Chemie International Edition in English”, 33 (2324), 1995, s. 2375–2378, DOI: 10.1002/anie.199423751, ISSN0570-0833 [dostęp 2022-01-16].
Xuan-YuX.Y.MengXuan-YuX.Y. i inni, Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery, „Current Computer Aided-Drug Design”, 7 (2), 2011, s. 146–157, DOI: 10.2174/157340911795677602, ISSN1573-4099 [dostęp 2022-01-16].
Sheng-YouS.Y.HuangSheng-YouS.Y., XiaoqinX.ZouXiaoqinX., Advances and Challenges in Protein-Ligand Docking, „International Journal of Molecular Sciences”, 11 (8), 2010, s. 3016–3034, DOI: 10.3390/ijms11083016, ISSN1422-0067 [dostęp 2022-01-16].
StefanoS.ForliStefanoS., Arthur J.A.J.OlsonArthur J.A.J., A Force Field with Discrete Displaceable Waters and Desolvation Entropy for Hydrated Ligand Docking, „Journal of Medicinal Chemistry”, 55 (2), 2012, s. 623–638, DOI: 10.1021/jm2005145, ISSN0022-2623 [dostęp 2022-01-16].
Marley L.M.L.SamwaysMarley L.M.L. i inni, Water molecules at protein–drug interfaces: computational prediction and analysis methods, „Chemical Society Reviews”, 50 (16), 2021, s. 9104–9120, DOI: 10.1039/d0cs00151a, ISSN0306-0012 [dostęp 2022-01-16].
Gregory A.G.A.RossGregory A.G.A., Garrett M.G.M.MorrisGarrett M.G.M., Philip C.P.C.BigginPhilip C.P.C., Rapid and Accurate Prediction and Scoring of Water Molecules in Protein Binding Sites, „PLoS ONE”, 7 (3), 2012, e32036, DOI: 10.1371/journal.pone.0032036, ISSN1932-6203 [dostęp 2022-01-16].
AlessioA.AmadasiAlessioA. i inni, Robust Classification of “Relevant” Water Molecules in Putative Protein Binding Sites, „Journal of Medicinal Chemistry”, 51 (4), 2008, s. 1063–1067, DOI: 10.1021/jm701023h, ISSN0022-2623 [dostęp 2022-01-16].
MaximM.TotrovMaximM., RubenR.AbagyanRubenR., Flexible ligand docking to multiple receptor conformations: a practical alternative, „Current Opinion in Structural Biology”, 18 (2), 2008, s. 178–184, DOI: 10.1016/j.sbi.2008.01.004, ISSN0959-440X [dostęp 2022-01-16].
ChandrikaCh.B-RaoChandrikaCh., JyothiJ.SubramanianJyothiJ., Somesh D.S.D.SharmaSomesh D.S.D., Managing protein flexibility in docking and its applications, „Drug Discovery Today”, 14 (7–8), 2009, s. 394–400, DOI: 10.1016/j.drudis.2009.01.003, ISSN1359-6446 [dostęp 2022-01-16].
PietroP.CozziniPietroP., ChemInform Abstract: Target Flexibility: An Emerging Consideration in Drug Discovery and Design, „ChemInform”, 40 (3), 2009, DOI: 10.1002/chin.200903235, ISSN0931-7597 [dostęp 2022-01-16].
Sheng-YouS.Y.HuangSheng-YouS.Y., XiaoqinX.ZouXiaoqinX., Ensemble docking of multiple protein structures: Considering protein structural variations in molecular docking, „Proteins: Structure, Function, and Bioinformatics”, 66 (2), 2006, s. 399–421, DOI: 10.1002/prot.21214, ISSN0887-3585 [dostęp 2022-01-16].
Steven M.S.M.BachrachSteven M.S.M., Computational organic chemistry, Wiley-Interscience, 2007, ISBN 978-0-470-14812-9, OCLC180192820 [dostęp 2022-01-16]. Brak numerów stron w książce
Stephen JS.J.CampbellStephen JS.J. i inni, Ligand binding: functional site location, similarity and docking, „Current Opinion in Structural Biology”, 13 (3), 2003, s. 389–395, DOI: 10.1016/s0959-440x(03)00075-7, ISSN0959-440X [dostęp 2022-01-16].
YangY.LiuYangY. i inni, CB-Dock: a web server for cavity detection-guided protein–ligand blind docking, „Acta Pharmacologica Sinica”, 41 (1), 2019, s. 138–144, DOI: 10.1038/s41401-019-0228-6, ISSN1671-4083 [dostęp 2022-01-16].
Mark N.M.N.WassMark N.M.N., Lawrence A.L.A.KelleyLawrence A.L.A., Michael J.E.M.J.E.SternbergMichael J.E.M.J.E., 3DLigandSite: predicting ligand-binding sites using similar structures, „Nucleic Acids Research”, 38 (suppl_2), 2010, W469–W473, DOI: 10.1093/nar/gkq406, ISSN1362-4962 [dostęp 2022-01-16].
Jonathan C.J.C.FullerJonathan C.J.C., Nicholas J.N.J.BurgoyneNicholas J.N.J., Richard M.R.M.JacksonRichard M.R.M., Predicting druggable binding sites at the protein–protein interface, „Drug Discovery Today”, 14 (3–4), 2009, s. 155–161, DOI: 10.1016/j.drudis.2008.10.009, ISSN1359-6446 [dostęp 2022-01-16].
Michael D.M.D.VoseMichael D.M.D., Simple genetic algorithm. Foundations and theory, [publisher not identified], ISBN 978-0-262-28564-3, OCLC956674574 [dostęp 2022-01-16]. Brak numerów stron w książce
R.R.RohsR.R., Molecular flexibility in ab initio drug docking to DNA: binding-site and binding-mode transitions in all-atom Monte Carlo simulations, „Nucleic Acids Research”, 33 (22), 2005, s. 7048–7057, DOI: 10.1093/nar/gki1008, ISSN0305-1048 [dostęp 2022-01-16].
JinJ.LiJinJ., AilingA.FuAilingA., LeL.ZhangLeL., An Overview of Scoring Functions Used for Protein–Ligand Interactions in Molecular Docking, „Interdisciplinary Sciences: Computational Life Sciences”, 11 (2), 2019, s. 320–328, DOI: 10.1007/s12539-019-00327-w, ISSN1913-2751 [dostęp 2022-01-16].
Bruce R.B.R.DonaldBruce R.B.R., Algorithms in structural molecular biology, MIT Press, 2011, ISBN 978-0-262-01559-2, OCLC667592553 [dostęp 2022-01-16]. Brak numerów stron w książce
RenxiaoR.WangRenxiaoR., YipinY.LuYipinY., ShaomengS.WangShaomengS., Comparative Evaluation of 11 Scoring Functions for Molecular Docking, „Journal of Medicinal Chemistry”, 46 (12), 2003, s. 2287–2303, DOI: 10.1021/jm0203783, ISSN0022-2623 [dostęp 2022-01-16].
Alexander D.A.D.MackerellAlexander D.A.D., Empirical force fields for biological macromolecules: Overview and issues, „Journal of Computational Chemistry”, 25 (13), 2004, s. 1584–1604, DOI: 10.1002/jcc.20082, ISSN0192-8651 [dostęp 2022-01-16].
ChaoCh.ShenChaoCh. i inni, From machine learning to deep learning: Advances in scoring functions for protein–ligand docking, „WIREs Computational Molecular Science”, 10 (1), 2019, DOI: 10.1002/wcms.1429, ISSN1759-0876 [dostęp 2022-01-16].
Jones i inni, Improved Protein-ligand Binding Affinity Prediction with Structure-Based Deep Fusion Inference, 17 maja 2020, OCLC1228408141 [dostęp 2022-01-16]. Brak numerów stron w książce
HongjianH.LiHongjianH. i inni, Improving AutoDock Vina Using Random Forest: The Growing Accuracy of Binding Affinity Prediction by the Effective Exploitation of Larger Data Sets, „Molecular Informatics”, 34 (2–3), 2015, s. 115–126, DOI: 10.1002/minf.201400132, ISSN1868-1743 [dostęp 2022-01-16].
Jacob D.J.D.DurrantJacob D.J.D., J. AndrewJ.A.McCammonJ. AndrewJ.A., NNScore: A Neural-Network-Based Scoring Function for the Characterization of Protein–Ligand Complexes, „Journal of Chemical Information and Modeling”, 50 (10), 2010, s. 1865–1871, DOI: 10.1021/ci100244v, ISSN1549-9596 [dostęp 2022-01-16].
Yu-ChianY.Ch.ChenYu-ChianY.Ch., Erratum: Beware of Docking!, „Trends in Pharmacological Sciences”, 36 (9), 2015, s. 617, DOI: 10.1016/j.tips.2015.01.004, ISSN0165-6147 [dostęp 2022-01-16].
Nataraj S.N.S.PagadalaNataraj S.N.S., KhajamohiddinK.SyedKhajamohiddinK., JackJ.TuszynskiJackJ., Software for molecular docking: a review, „Biophysical Reviews”, 9 (2), 2017, s. 91–102, DOI: 10.1007/s12551-016-0247-1, ISSN1867-2450 [dostęp 2022-01-16].
Eric D.E.D.BoittierEric D.E.D. i inni, Assessing Molecular Docking Tools to Guide Targeted Drug Discovery of CD38 Inhibitors, „International Journal of Molecular Sciences”, 21 (15), 2020, s. 5183, DOI: 10.3390/ijms21155183, ISSN1422-0067 [dostęp 2022-01-16].
Juan PabloJ.P.ArconJuan PabloJ.P. i inni, AutoDock Bias: improving binding mode prediction and virtual screening using known protein–ligand interactions, „Bioinformatics”, 35 (19), 2019, s. 3836–3838, DOI: 10.1093/bioinformatics/btz152, ISSN1367-4803 [dostęp 2022-01-16].
LeonardoL.Solis-VasquezLeonardoL. i inni, Benchmarking the performance of irregular computations in AutoDock-GPU molecular docking, „Parallel Computing”, 109, 2022, s. 102861, DOI: 10.1016/j.parco.2021.102861, ISSN0167-8191 [dostęp 2022-01-16].
XubenX.HouXubenX. i inni, How to Improve Docking Accuracy of AutoDock4.2: A Case Study Using Different Electrostatic Potentials, „Journal of Chemical Information and Modeling”, 53 (1), 2013, s. 188–200, DOI: 10.1021/ci300417y, ISSN1549-9596 [dostęp 2022-01-16].
OlegO.TrottOlegO., Arthur J.A.J.OlsonArthur J.A.J., AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, „Journal of Computational Chemistry”, 2009, NA–NA, DOI: 10.1002/jcc.21334, ISSN0192-8651 [dostęp 2022-01-16].
VsevolodV.TanchukVsevolodV. i inni, A New Scoring Function for Molecular Docking Based on AutoDock and AutoDock Vina, „Current Drug Discovery Technologies”, 12 (3), 2015, s. 170–178, DOI: 10.2174/1570163812666150825110208, ISSN1570-1638 [dostęp 2022-01-16].
Demetri T.D.T.MoustakasDemetri T.D.T. i inni, Development and validation of a modular, extensible docking program: DOCK 5, „Journal of Computer-Aided Molecular Design”, 20 (10–11), 2006, s. 601–619, DOI: 10.1007/s10822-006-9060-4, ISSN0920-654X [dostęp 2022-01-16].
Marcel L.M.L.VerdonkMarcel L.M.L. i inni, Improved protein-ligand docking using GOLD, „Proteins: Structure, Function, and Bioinformatics”, 52 (4), 2003, s. 609–623, DOI: 10.1002/prot.10465, ISSN0887-3585 [dostęp 2022-01-16].
BerndB.KramerBerndB., MatthiasM.RareyMatthiasM., ThomasT.LengauerThomasT., Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking, „Proteins: Structure, Function, and Genetics”, 37 (2), 1999, s. 228–241, DOI: 10.1002/(sici)1097-0134(19991101)37:2<228::aid-prot8>3.0.co;2-8, ISSN0887-3585 [dostęp 2022-01-16].
VeronicaV.SalmasoVeronicaV., StefanoS.MoroStefanoS., Bridging Molecular Docking to Molecular Dynamics in Exploring Ligand-Protein Recognition Process: An Overview, „Frontiers in Pharmacology”, 9, 2018, DOI: 10.3389/fphar.2018.00923, ISSN1663-9812 [dostęp 2022-01-16].
HernanH.AlonsoHernanH., Andrey A.A.A.BliznyukAndrey A.A.A., Jill E.J.E.GreadyJill E.J.E., Combining Docking and Molecular Dynamic Simulations in Drug Design, „ChemInform”, 37 (45), 2006, DOI: 10.1002/chin.200645280, ISSN0931-7597 [dostęp 2022-01-16].