Dopamina (Polish Wikipedia)

Analysis of information sources in references of the Wikipedia article "Dopamina" in Polish language version.

refsWebsite
Global rank Polish rank
4th place
7th place
2nd place
6th place
6th place
33rd place
924th place
75th place
4,294th place
205th place
40th place
23rd place
low place
low place
3,258th place
2,944th place
low place
low place
low place
low place
low place
low place
low place
low place
low place
low place
1st place
1st place
4,032nd place
2,809th place

153.132

74.125.153.132

archive.org

  • Chapter 6: Widely Projecting Systems: Monoamines, Acetylcholine, and Orexin. W: Molecular Neuropharmacology: A Foundation for Clinical Neuroscience. Wyd. 2nd. New York: McGraw-Hill Medical, 2009, s. 147–148, 154–157. ISBN 0-07-148127-3. (ang.).
  • Basal Ganglia and the Striatal Motor System. W: Neuroanatomy (Board Review Series). Wyd. 4th. Baltimore: Wulters Kluwer & Lippincott Wiliams & Wilkins, 2008, s. 274–281. ISBN 0-7817-7245-1. (ang.).
  • Molecular Neuropharmacology: A Foundation for Clinical Neuroscience. Wyd. 2nd. New York: McGraw-Hill Medical, 2009, s. 147–148, 366–367, 375–376. ISBN 978-0-07-148127-4. Cytat: VTA DA neurons play a critical role in motivation, reward-related behavior (Chapter 15), attention, and multiple forms of memory. This organization of the DA system, wide projection from a limited number of cell bodies, permits coordinated responses to potent new rewards. Thus, acting in diverse terminal fields, dopamine confers motivational salience (“wanting”) on the reward itself or associated cues (nucleus accumbens shell region), updates the value placed on different goals in light of this new experience (orbital prefrontal cortex), helps consolidate multiple forms of memory (amygdala and hippocampus), and encodes new motor programs that will facilitate obtaining this reward in the future (nucleus accumbens core region and dorsal striatum). In this example, dopamine modulates the processing of sensorimotor information in diverse neural circuits to maximize the ability of the organism to obtain future rewards. ...
    The brain reward circuitry that is targeted by addictive drugs normally mediates the pleasure and strengthening of behaviors associated with natural reinforcers, such as food, water, and sexual contact. Dopamine neurons in the VTA are activated by food and water, and dopamine release in the NAc is stimulated by the presence of natural reinforcers, such as food, water, or a sexual partner. ...
    The NAc and VTA are central components of the circuitry underlying reward and memory of reward. As previously mentioned, the activity of dopaminergic neurons in the VTA appears to be linked to reward prediction. The NAc is involved in learning associated with reinforcement and the modulation of motoric responses to stimuli that satisfy internal homeostatic needs. The shell of the NAc appears to be particularly important to initial drug actions within reward circuitry; addictive drugs appear to have a greater effect on dopamine release in the shell than in the core of the NAc. ... If motivational drive is described in terms of wanting, and hedonic evaluation in terms of liking, it appears that wanting can be dissociated from liking and that dopamine may influence these phenomena differently. Differences between wanting and liking are confirmed in reports by human addicts, who state that their desire for drugs (wanting) increases with continued use even when pleasure (liking) decreases because of tolerance.. (ang.).

britannica.com

chemicalland21.com

doi.org

dx.doi.org

  • Graeme Eisenhofer, Irwin J. Kopin, David S. Goldstein, Catecholamine metabolism: a contemporary view with implications for physiology and medicine, „Pharmacological Reviews”, 56 (3), 2004, s. 331–349, DOI10.1124/pr.56.3.1, PMID15317907 (ang.).
  • F. Amin, M. Davidson, K.L. Davis, Homovanillic acid measurement in clinical research: a review of methodology, „Schizophrenia Bulletin”, 18 (1), 1992, s. 123–148, DOI10.1093/schbul/18.1.123, PMID1553492 (ang.).
  • F. Amin i inni, Assessment of the Central Dopaminergic Index of Plasma HVA in Schizophrenia, „Schizophrenia Bulletin”, 21 (1), 1995, s. 53–66, DOI10.1093/schbul/21.1.53, PMID7770741 (ang.).
  • Ikuko Miyazaki, Masato Asanuma, Dopaminergic neuron-specific oxidative stress caused by dopamine itself, „Acta Medica Okayama”, 62 (3), 2008, s. 141–150, DOI10.18926/AMO/30942, PMID18596830 (ang.).
  • David K. Grandy, Gregory M. Miller, Jun-Xu Li, „TAARgeting Addiction”--The Alamo Bears Witness to Another Revolution: An Overview of the Plenary Symposium of the 2015 Behavior, Biology and Chemistry Conference, „Drug and Alcohol Dependence”, 159, 2016, s. 9–16, DOI10.1016/j.drugalcdep.2015.11.014, PMID26644139, PMCIDPMC4724540 (ang.).
  • Lee E. Eiden i inni, The vesicular amine transporter family (SLC18): amine/proton antiporters required for vesicular accumulation and regulated exocytotic secretion of monoamines and acetylcholine, „Pflugers Archiv: European Journal of Physiology”, 447 (5), 2004, s. 636–640, DOI10.1007/s00424-003-1100-5, PMID12827358 (ang.).
  • Gregory M. Miller, The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity, „Journal of Neurochemistry”, 116 (2), 2011, s. 164–176, DOI10.1111/j.1471-4159.2010.07109.x, PMID21073468, PMCIDPMC3005101 (ang.).
  • Jean-Martin Beaulieu, Raul R. Gainetdinov, The physiology, signaling, and pharmacology of dopamine receptors, „Pharmacological Reviews”, 63 (1), 2011, s. 182–217, DOI10.1124/pr.110.002642, PMID21303898 (ang.).
  • Gonzalo E. Torres, Raul R. Gainetdinov, Marc G. Caron, Plasma membrane monoamine transporters: structure, regulation and function, „Nature Reviews. Neuroscience”, 4 (1), 2003, s. 13–25, DOI10.1038/nrn1008, PMID12511858 (ang.).
  • M.E. Rice, J.C. Patel, S.J. Cragg, Dopamine release in the basal ganglia, „Neuroscience”, 198, 2011, s. 112–137, DOI10.1016/j.neuroscience.2011.08.066, PMID21939738, PMCIDPMC3357127 (ang.).
  • Wolfram Schultz, Multiple dopamine functions at different time courses, „Annual Review of Neuroscience”, 30, 2007, s. 259–288, DOI10.1146/annurev.neuro.28.061604.135722, PMID17600522 (ang.).
  • Anders Björklund, Stephen B. Dunnett, Dopamine neuron systems in the brain: an update, „Trends in Neurosciences”, 30 (5), 2007, s. 194–202, DOI10.1016/j.tins.2007.03.006, PMID17408759 (ang.).
  • Chadwick W. Christine, Michael J. Aminoff, Clinical differentiation of parkinsonian syndromes: prognostic and therapeutic relevance, „The American Journal of Medicine”, 117 (6), 2004, s. 412–419, DOI10.1016/j.amjmed.2004.03.032, PMID15380498 (ang.).
  • N. Ben-Jonathan, R. Hnasko, Dopamine as a prolactin (PRL) inhibitor, „Endocrine Reviews”, 22 (6), 2001, s. 724–763, DOI10.1210/edrv.22.6.0451, PMID11739329 (ang.).
  • Paul Witkovsky, Dopamine and retinal function, „Documenta Ophthalmologica. Advances in Ophthalmology”, 108 (1), 2004, s. 17–40, DOI10.1023/B:DOOP.0000019487.88486.0a, PMID15104164 (ang.).
  • V.S. Chakravarthy, Denny Joseph, Raju S. Bapi, What do the basal ganglia do? A modeling perspective, „Biological Cybernetics”, 103 (3), 2010, s. 237–253, DOI10.1007/s00422-010-0401-y, PMID20644953 (ang.).
  • W ten sposób jądra podstawne są odpowiedzialne za rozpoczęcie ruchu, ale nie determinują w szczegółach jak zostanie on wykonanyStan B. Floresco, The nucleus accumbens: an interface between cognition, emotion, and action, „Annual Review of Psychology”, 66, 2015, s. 25–52, DOI10.1146/annurev-psych-010213-115159, PMID25251489 (ang.).
  • Bernard W Balleine i inni, Hierarchical control of goal-directed action in the cortical–basal ganglia network, „Current Opinion in Behavioral Sciences”, 5, 2015, s. 1–7, DOI10.1016/j.cobeha.2015.06.001 (ang.).
  • J. Jankovic, Parkinson’s disease: clinical features and diagnosis, „Journal of Neurology, Neurosurgery, and Psychiatry”, 79 (4), 2008, s. 368–376, DOI10.1136/jnnp.2007.131045, PMID18344392 (ang.).
  • Tommy Pattij, Louk J.M.J. Vanderschuren, The neuropharmacology of impulsive behaviour, „Trends in Pharmacological Sciences”, 29 (4), 2008, s. 192–199, DOI10.1016/j.tips.2008.01.002, PMID18304658.
  • Wolfram Schultz, Neuronal Reward and Decision Signals: From Theories to Data, „Physiological Reviews”, 95 (3), 2015, s. 853–951, DOI10.1152/physrev.00023.2014, PMID26109341, PMCIDPMC4491543 [dostęp 2015-09-24], Cytat: Rewards are crucial objects that induce learning, approach behavior, choices, and emotions. Whereas emotions are difficult to investigate in animals, the learning function is mediated by neuronal reward prediction error signals which implement basic constructs of reinforcement learning theory. These signals are found in dopamine neurons, which emit a global reward signal to striatum and frontal cortex, and in specific neurons in triatum, amygdala, and frontal cortex projecting to select neuronal populations ... FIGURE 12. Reward components inducing the two phasic dopamine response components. The initial component (blue) detects the event before having identified its value. It increases with sensory impact (physical salience), novelty (novelty/surprise salience), generalization to rewarded stimuli, and reward context. This component is coded as temporal event prediction error (389). The second component (red) codes reward value (as reward prediction error) ... The salience of rewards derives from three principal factors, namely, their physical intensity and impact (physical salience), their novelty and surprise (novelty/surprise salience), and their general motivational impact shared with punishers (motivational salience). A separate form not included in this scheme, incentive salience, primarily addresses dopamine function in addiction and refers only to approach behavior (as opposed to learning) (ang.).
  • T.E. Robinson, K.C. Berridge, The neural basis of drug craving: an incentive-sensitization theory of addiction, „Brain Research. Brain Research Reviews”, 18 (3), 1993, s. 247–291, DOI10.1016/0165-0173(93)90013-p, PMID8401595 (ang.).
  • Jason S. Wright, Jaak Panksepp, An Evolutionary Framework to Understand Foraging, Wanting, and Desire: The Neuropsychology of the SEEKING System, „Neuropsychoanalysis”, 14 (1), 2012, s. 5–39, DOI10.1080/15294145.2012.10773683 (ang.).
  • Kent C. Berridge, Terry E. Robinson, J. Wayne Aldridge, Dissecting components of reward: ‘liking’, ‘wanting’, and learning, „Current Opinion in Pharmacology”, 9 (1), 2009, s. 65–73, DOI10.1016/j.coph.2008.12.014, PMID19162544, PMCIDPMC2756052, Cytat: Conversely, amplification of ‘wanting’ without ‘liking’ has been produced by the activation of dopamine systems by amphetamine or similar catecholamine-activating drugs given systemically or microinjected directly into the nucleus accumbens, or by genetic mutation that raises extracellular levels of dopamine (via knockdown of dopamine transporters in the synapse) in mesocorticolimbic circuits, and by the near-permanent sensitization of mesocorticolimbic-dopamine-related systems by repeated administration of high-doses of addictive drugs (Figure 3–Figure 5) [39•,40•,61•,66]. We have proposed that in susceptible individuals the neural sensitization of incentive salience by drugs of abuse may generate compulsive ‘wanting’ to take more drugs, whether or not the same drugs are correspondingly ‘liked’, and thus contribute to addiction [39•,40•,42] (Figure 5). (ang.).
  • Ethan S. Bromberg-Martin, Masayuki Matsumoto, Okihide Hikosaka, Dopamine in motivational control: rewarding, aversive, and alerting, „Neuron”, 68 (5), 2010, s. 815–834, DOI10.1016/j.neuron.2010.11.022, PMID21144997, PMCIDPMC3032992 (ang.).
  • L.M. Yager i inni, The ins and outs of the striatum: role in drug addiction, „Neuroscience”, 301, 2015, s. 529–541, DOI10.1016/j.neuroscience.2015.06.033, PMID26116518, PMCIDPMC4523218 (ang.).
  • Michael P. Saddoris i inni, Differential Dopamine Release Dynamics in the Nucleus Accumbens Core and Shell Reveal Complementary Signals for Error Prediction and Incentive Motivation, „The Journal of Neuroscience: The Official Journal of the Society for Neuroscience”, 35 (33), 2015, s. 11572–11582, DOI10.1523/JNEUROSCI.2344-15.2015, PMID26290234, PMCIDPMC4540796, Cytat: Here, we have found that real-time dopamine release within the nucleus accumbens (a primary target of midbrain dopamine neurons) strikingly varies between core and shell subregions. In the core, dopamine dynamics are consistent with learning-based theories (such as reward prediction error) whereas in the shell, dopamine is consistent with motivation-based theories (e.g., incentive salience). (ang.).
  • Kent C. Berridge, Morten L. Kringelbach, Pleasure systems in the brain, „Neuron”, 86 (3), 2015, s. 646–664, DOI10.1016/j.neuron.2015.02.018, PMID25950633, PMCIDPMC4425246 (ang.).
  • R.A. Wise, Addictive drugs and brain stimulation reward, „Annual Review of Neuroscience”, 19, 1996, s. 319–340, DOI10.1146/annurev.ne.19.030196.001535, PMID8833446 (ang.).
  • Roy A. Wise, Dopamine and reward: the anhedonia hypothesis 30 years on, „Neurotoxicity Research”, 14 (2–3), 2008, s. 169–183, DOI10.1007/BF03033808, PMID19073424, PMCIDPMC3155128 (ang.).
  • J.D. Salamone i inni, Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse, „The Journal of Pharmacology and Experimental Therapeutics”, 305 (1), 2003, s. 1–8, DOI10.1124/jpet.102.035063, PMID12649346 (ang.).
  • C. Missale i inni, Dopamine receptors: from structure to function, „Physiological Reviews”, 78 (1), 1998, s. 189–225, DOI10.1152/physrev.1998.78.1.189, PMID9457173 (ang.).
  • Francesca R. Buttarelli i inni, The dopaminergic system in peripheral blood lymphocytes: from physiology to pharmacology and potential applications to neuropsychiatric disorders, „Current Neuropharmacology”, 9 (2), 2011, s. 278–288, DOI10.2174/157015911795596612, PMID22131937, PMCIDPMC3131719 (ang.).
  • Chandrani Sarkar i inni, The immunoregulatory role of dopamine: an update, „Brain, Behavior, and Immunity”, 24 (4), 2010, s. 525–528, DOI10.1016/j.bbi.2009.10.015, PMID19896530, PMCIDPMC2856781 (ang.).
  • Tahir Hussain, Mustafa F. Lokhandwala, Renal dopamine receptors and hypertension, „Experimental Biology and Medicine”, 228 (2), 2003, s. 134–142, DOI10.1177/153537020322800202, PMID12563019 (ang.).
  • Marcelo Roberto Choi i inni, Renal dopaminergic system: Pathophysiological implications and clinical perspectives, „World Journal of Nephrology”, 4 (2), 2015, s. 196–212, DOI10.5527/wjn.v4.i2.196, PMID25949933, PMCIDPMC4419129 [dostęp 2016-01-15] (ang.).
  • R.M. Carey, Theodore Cooper Lecture: Renal dopamine system: paracrine regulator of sodium homeostasis and blood pressure, „Hypertension”, 38 (3), 2001, s. 297–302, DOI10.1161/hy0901.096422, PMID11566894 (ang.).
  • Blanca Rubí, Pierre Maechler, Minireview: new roles for peripheral dopamine on metabolic control and tumor growth: let’s seek the balance, „Endocrinology”, 151 (12), 2010, s. 5570–5581, DOI10.1210/en.2010-0745, PMID21047943 (ang.).
  • Jing Wu i inni, Role of dopamine receptors in ADHD: a systematic meta-analysis, „Molecular Neurobiology”, 45 (3), 2012, s. 605–620, DOI10.1007/s12035-012-8278-5, PMID22610946.
  • Craig W. Berridge, David M. Devilbiss, Psychostimulants as cognitive enhancers: the prefrontal cortex, catecholamines, and attention-deficit/hyperactivity disorder, „Biological Psychiatry”, 69 (12), 2011, e101–111, DOI10.1016/j.biopsych.2010.06.023, PMID20875636, PMCIDPMC3012746.
  • S.K. Jääskeläinen i inni, Role of the dopaminergic system in chronic pain – a fluorodopa-PET study, „Pain”, 90 (3), 2001, s. 257–260, DOI10.1016/S0304-3959(00)00409-7, PMID11207397.
  • Patrick B. Wood, Role of central dopamine in pain and analgesia, „Expert Review of Neurotherapeutics”, 8 (5), 2008, s. 781–797, DOI10.1586/14737175.8.5.781, PMID18457535.
  • J.W. Maas i inni, Schizophrenia, Psychosis, and Cerebral Spinal Fluid Homovanillic Acid Concentrations, „Schizophrenia Bulletin”, 23 (1), 1997, s. 147–154, DOI10.1093/schbul/23.1.147, PMID9050120 (ang.).
  • M.J. Durcan i inni, Is clozapine selective for the dopamine D4 receptor?, „Life Sciences”, 57 (18), 1995, PL275–283, DOI10.1016/0024-3205(95)02151-8, PMID7475902 (ang.).
  • J.A. Lieberman, J.M. Kane, J. Alvir, Provocative tests with psychostimulant drugs in schizophrenia, „Psychopharmacology”, 91 (4), 1987, s. 415–433, DOI10.1007/BF00216006, PMID2884687 (ang.).
  • O. Benkert i inni, Altered tyrosine daytime plasma levels in endogenous depressive patients, „Archives of General Psychiatry”, 25 (4), 1971, s. 359–363, DOI10.1001/archpsyc.1971.01750160071013, PMID5116991 (ang.).
  • M.B. Bowers, G.R. Heninger, F. Gerbode, Cerebrospinal fluid 5-hydroxyindoleacetic acid and homovanillic acid in psychiatric patients, „International Journal of Neuropharmacology”, 8 (3), 1969, s. 255–262, DOI10.1016/0028-3908(69)90046-x (ang.).
  • Jeffrey N. Carlson i inni, Chronic antidepressant drug treatment reduces turning behavior and increases dopamine levels in the medial prefrontal cortex, „Brain Research”, 707 (1), 1996, s. 122–126, DOI10.1016/0006-8993(95)01341-5 (ang.).
  • F.R. Schneier i inni, Low dopamine D(2) receptor binding potential in social phobia, „The American Journal of Psychiatry”, 157 (3), 2000, s. 457–459, DOI10.1176/appi.ajp.157.3.457, PMID10698826.

doi.org

  • Intraneuronal dopamine-quinone synthesis: a review. „Neurotoxicity Research”. 1 (3), s. 181–195, 2000. DOI: 10.1007/BF03033289. PMID: 12835101. (ang.). 
  • Dopamine and the spinal cord in restless legs syndrome: does spinal cord physiology reveal a basis for augmentation?. „Sleep Medicine Reviews”. 10 (3), s. 185–196, 2006. DOI: 10.1016/j.smrv.2006.01.004. PMID: 16762808. (ang.). 
  • Merims D, Giladi N. Dopamine dysregulation syndrome, addiction and behavioral changes in Parkinson’s disease. „Parkinsonism & Related Disorders”. 14 (4), s. 273–280, 2008. DOI: 10.1016/j.parkreldis.2007.09.007. PMID: 17988927. 

drugbank.ca

guidetopharmacology.org

innovations-report.com

nice.org.uk

guidance.nice.org.uk

nih.gov

ncbi.nlm.nih.gov

  • Graeme Eisenhofer, Irwin J. Kopin, David S. Goldstein, Catecholamine metabolism: a contemporary view with implications for physiology and medicine, „Pharmacological Reviews”, 56 (3), 2004, s. 331–349, DOI10.1124/pr.56.3.1, PMID15317907 (ang.).
  • F. Amin, M. Davidson, K.L. Davis, Homovanillic acid measurement in clinical research: a review of methodology, „Schizophrenia Bulletin”, 18 (1), 1992, s. 123–148, DOI10.1093/schbul/18.1.123, PMID1553492 (ang.).
  • F. Amin i inni, Assessment of the Central Dopaminergic Index of Plasma HVA in Schizophrenia, „Schizophrenia Bulletin”, 21 (1), 1995, s. 53–66, DOI10.1093/schbul/21.1.53, PMID7770741 (ang.).
  • Intraneuronal dopamine-quinone synthesis: a review. „Neurotoxicity Research”. 1 (3), s. 181–195, 2000. DOI: 10.1007/BF03033289. PMID: 12835101. (ang.). 
  • Ikuko Miyazaki, Masato Asanuma, Dopaminergic neuron-specific oxidative stress caused by dopamine itself, „Acta Medica Okayama”, 62 (3), 2008, s. 141–150, DOI10.18926/AMO/30942, PMID18596830 (ang.).
  • David K. Grandy, Gregory M. Miller, Jun-Xu Li, „TAARgeting Addiction”--The Alamo Bears Witness to Another Revolution: An Overview of the Plenary Symposium of the 2015 Behavior, Biology and Chemistry Conference, „Drug and Alcohol Dependence”, 159, 2016, s. 9–16, DOI10.1016/j.drugalcdep.2015.11.014, PMID26644139, PMCIDPMC4724540 (ang.).
  • Lee E. Eiden i inni, The vesicular amine transporter family (SLC18): amine/proton antiporters required for vesicular accumulation and regulated exocytotic secretion of monoamines and acetylcholine, „Pflugers Archiv: European Journal of Physiology”, 447 (5), 2004, s. 636–640, DOI10.1007/s00424-003-1100-5, PMID12827358 (ang.).
  • Gregory M. Miller, The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity, „Journal of Neurochemistry”, 116 (2), 2011, s. 164–176, DOI10.1111/j.1471-4159.2010.07109.x, PMID21073468, PMCIDPMC3005101 (ang.).
  • Jean-Martin Beaulieu, Raul R. Gainetdinov, The physiology, signaling, and pharmacology of dopamine receptors, „Pharmacological Reviews”, 63 (1), 2011, s. 182–217, DOI10.1124/pr.110.002642, PMID21303898 (ang.).
  • Gonzalo E. Torres, Raul R. Gainetdinov, Marc G. Caron, Plasma membrane monoamine transporters: structure, regulation and function, „Nature Reviews. Neuroscience”, 4 (1), 2003, s. 13–25, DOI10.1038/nrn1008, PMID12511858 (ang.).
  • M.E. Rice, J.C. Patel, S.J. Cragg, Dopamine release in the basal ganglia, „Neuroscience”, 198, 2011, s. 112–137, DOI10.1016/j.neuroscience.2011.08.066, PMID21939738, PMCIDPMC3357127 (ang.).
  • Wolfram Schultz, Multiple dopamine functions at different time courses, „Annual Review of Neuroscience”, 30, 2007, s. 259–288, DOI10.1146/annurev.neuro.28.061604.135722, PMID17600522 (ang.).
  • Anders Björklund, Stephen B. Dunnett, Dopamine neuron systems in the brain: an update, „Trends in Neurosciences”, 30 (5), 2007, s. 194–202, DOI10.1016/j.tins.2007.03.006, PMID17408759 (ang.).
  • A. Dahlström, K. Fuxe. Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. „Acta Physiologica Scandinavica”. 62 (Suppl. 232), s. 1–55, 1964. PMID: 14229500. (ang.). 
  • Chadwick W. Christine, Michael J. Aminoff, Clinical differentiation of parkinsonian syndromes: prognostic and therapeutic relevance, „The American Journal of Medicine”, 117 (6), 2004, s. 412–419, DOI10.1016/j.amjmed.2004.03.032, PMID15380498 (ang.).
  • Dopamine and the spinal cord in restless legs syndrome: does spinal cord physiology reveal a basis for augmentation?. „Sleep Medicine Reviews”. 10 (3), s. 185–196, 2006. DOI: 10.1016/j.smrv.2006.01.004. PMID: 16762808. (ang.). 
  • N. Ben-Jonathan, R. Hnasko, Dopamine as a prolactin (PRL) inhibitor, „Endocrine Reviews”, 22 (6), 2001, s. 724–763, DOI10.1210/edrv.22.6.0451, PMID11739329 (ang.).
  • Paul Witkovsky, Dopamine and retinal function, „Documenta Ophthalmologica. Advances in Ophthalmology”, 108 (1), 2004, s. 17–40, DOI10.1023/B:DOOP.0000019487.88486.0a, PMID15104164 (ang.).
  • V.S. Chakravarthy, Denny Joseph, Raju S. Bapi, What do the basal ganglia do? A modeling perspective, „Biological Cybernetics”, 103 (3), 2010, s. 237–253, DOI10.1007/s00422-010-0401-y, PMID20644953 (ang.).
  • W ten sposób jądra podstawne są odpowiedzialne za rozpoczęcie ruchu, ale nie determinują w szczegółach jak zostanie on wykonanyStan B. Floresco, The nucleus accumbens: an interface between cognition, emotion, and action, „Annual Review of Psychology”, 66, 2015, s. 25–52, DOI10.1146/annurev-psych-010213-115159, PMID25251489 (ang.).
  • J. Jankovic, Parkinson’s disease: clinical features and diagnosis, „Journal of Neurology, Neurosurgery, and Psychiatry”, 79 (4), 2008, s. 368–376, DOI10.1136/jnnp.2007.131045, PMID18344392 (ang.).
  • Tommy Pattij, Louk J.M.J. Vanderschuren, The neuropharmacology of impulsive behaviour, „Trends in Pharmacological Sciences”, 29 (4), 2008, s. 192–199, DOI10.1016/j.tips.2008.01.002, PMID18304658.
  • Wolfram Schultz, Neuronal Reward and Decision Signals: From Theories to Data, „Physiological Reviews”, 95 (3), 2015, s. 853–951, DOI10.1152/physrev.00023.2014, PMID26109341, PMCIDPMC4491543 [dostęp 2015-09-24], Cytat: Rewards are crucial objects that induce learning, approach behavior, choices, and emotions. Whereas emotions are difficult to investigate in animals, the learning function is mediated by neuronal reward prediction error signals which implement basic constructs of reinforcement learning theory. These signals are found in dopamine neurons, which emit a global reward signal to striatum and frontal cortex, and in specific neurons in triatum, amygdala, and frontal cortex projecting to select neuronal populations ... FIGURE 12. Reward components inducing the two phasic dopamine response components. The initial component (blue) detects the event before having identified its value. It increases with sensory impact (physical salience), novelty (novelty/surprise salience), generalization to rewarded stimuli, and reward context. This component is coded as temporal event prediction error (389). The second component (red) codes reward value (as reward prediction error) ... The salience of rewards derives from three principal factors, namely, their physical intensity and impact (physical salience), their novelty and surprise (novelty/surprise salience), and their general motivational impact shared with punishers (motivational salience). A separate form not included in this scheme, incentive salience, primarily addresses dopamine function in addiction and refers only to approach behavior (as opposed to learning) (ang.).
  • T.E. Robinson, K.C. Berridge, The neural basis of drug craving: an incentive-sensitization theory of addiction, „Brain Research. Brain Research Reviews”, 18 (3), 1993, s. 247–291, DOI10.1016/0165-0173(93)90013-p, PMID8401595 (ang.).
  • Kent C. Berridge, Terry E. Robinson, J. Wayne Aldridge, Dissecting components of reward: ‘liking’, ‘wanting’, and learning, „Current Opinion in Pharmacology”, 9 (1), 2009, s. 65–73, DOI10.1016/j.coph.2008.12.014, PMID19162544, PMCIDPMC2756052, Cytat: Conversely, amplification of ‘wanting’ without ‘liking’ has been produced by the activation of dopamine systems by amphetamine or similar catecholamine-activating drugs given systemically or microinjected directly into the nucleus accumbens, or by genetic mutation that raises extracellular levels of dopamine (via knockdown of dopamine transporters in the synapse) in mesocorticolimbic circuits, and by the near-permanent sensitization of mesocorticolimbic-dopamine-related systems by repeated administration of high-doses of addictive drugs (Figure 3–Figure 5) [39•,40•,61•,66]. We have proposed that in susceptible individuals the neural sensitization of incentive salience by drugs of abuse may generate compulsive ‘wanting’ to take more drugs, whether or not the same drugs are correspondingly ‘liked’, and thus contribute to addiction [39•,40•,42] (Figure 5). (ang.).
  • Ethan S. Bromberg-Martin, Masayuki Matsumoto, Okihide Hikosaka, Dopamine in motivational control: rewarding, aversive, and alerting, „Neuron”, 68 (5), 2010, s. 815–834, DOI10.1016/j.neuron.2010.11.022, PMID21144997, PMCIDPMC3032992 (ang.).
  • L.M. Yager i inni, The ins and outs of the striatum: role in drug addiction, „Neuroscience”, 301, 2015, s. 529–541, DOI10.1016/j.neuroscience.2015.06.033, PMID26116518, PMCIDPMC4523218 (ang.).
  • Michael P. Saddoris i inni, Differential Dopamine Release Dynamics in the Nucleus Accumbens Core and Shell Reveal Complementary Signals for Error Prediction and Incentive Motivation, „The Journal of Neuroscience: The Official Journal of the Society for Neuroscience”, 35 (33), 2015, s. 11572–11582, DOI10.1523/JNEUROSCI.2344-15.2015, PMID26290234, PMCIDPMC4540796, Cytat: Here, we have found that real-time dopamine release within the nucleus accumbens (a primary target of midbrain dopamine neurons) strikingly varies between core and shell subregions. In the core, dopamine dynamics are consistent with learning-based theories (such as reward prediction error) whereas in the shell, dopamine is consistent with motivation-based theories (e.g., incentive salience). (ang.).
  • Kent C. Berridge, Morten L. Kringelbach, Pleasure systems in the brain, „Neuron”, 86 (3), 2015, s. 646–664, DOI10.1016/j.neuron.2015.02.018, PMID25950633, PMCIDPMC4425246 (ang.).
  • R.A. Wise, Addictive drugs and brain stimulation reward, „Annual Review of Neuroscience”, 19, 1996, s. 319–340, DOI10.1146/annurev.ne.19.030196.001535, PMID8833446 (ang.).
  • Roy A. Wise, Dopamine and reward: the anhedonia hypothesis 30 years on, „Neurotoxicity Research”, 14 (2–3), 2008, s. 169–183, DOI10.1007/BF03033808, PMID19073424, PMCIDPMC3155128 (ang.).
  • Oscar Arias-Carrión, Ernst Pŏppel, Dopamine, learning, and reward-seeking behavior, „Acta Neurobiologiae Experimentalis”, 67 (4), 2007, s. 481–488, PMID18320725 (ang.).
  • J.D. Salamone i inni, Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse, „The Journal of Pharmacology and Experimental Therapeutics”, 305 (1), 2003, s. 1–8, DOI10.1124/jpet.102.035063, PMID12649346 (ang.).
  • C. Missale i inni, Dopamine receptors: from structure to function, „Physiological Reviews”, 78 (1), 1998, s. 189–225, DOI10.1152/physrev.1998.78.1.189, PMID9457173 (ang.).
  • Francesca R. Buttarelli i inni, The dopaminergic system in peripheral blood lymphocytes: from physiology to pharmacology and potential applications to neuropsychiatric disorders, „Current Neuropharmacology”, 9 (2), 2011, s. 278–288, DOI10.2174/157015911795596612, PMID22131937, PMCIDPMC3131719 (ang.).
  • Chandrani Sarkar i inni, The immunoregulatory role of dopamine: an update, „Brain, Behavior, and Immunity”, 24 (4), 2010, s. 525–528, DOI10.1016/j.bbi.2009.10.015, PMID19896530, PMCIDPMC2856781 (ang.).
  • Tahir Hussain, Mustafa F. Lokhandwala, Renal dopamine receptors and hypertension, „Experimental Biology and Medicine”, 228 (2), 2003, s. 134–142, DOI10.1177/153537020322800202, PMID12563019 (ang.).
  • Marcelo Roberto Choi i inni, Renal dopaminergic system: Pathophysiological implications and clinical perspectives, „World Journal of Nephrology”, 4 (2), 2015, s. 196–212, DOI10.5527/wjn.v4.i2.196, PMID25949933, PMCIDPMC4419129 [dostęp 2016-01-15] (ang.).
  • R.M. Carey, Theodore Cooper Lecture: Renal dopamine system: paracrine regulator of sodium homeostasis and blood pressure, „Hypertension”, 38 (3), 2001, s. 297–302, DOI10.1161/hy0901.096422, PMID11566894 (ang.).
  • Blanca Rubí, Pierre Maechler, Minireview: new roles for peripheral dopamine on metabolic control and tumor growth: let’s seek the balance, „Endocrinology”, 151 (12), 2010, s. 5570–5581, DOI10.1210/en.2010-0745, PMID21047943 (ang.).
  • Merims D, Giladi N. Dopamine dysregulation syndrome, addiction and behavioral changes in Parkinson’s disease. „Parkinsonism & Related Disorders”. 14 (4), s. 273–280, 2008. DOI: 10.1016/j.parkreldis.2007.09.007. PMID: 17988927. 
  • Jing Wu i inni, Role of dopamine receptors in ADHD: a systematic meta-analysis, „Molecular Neurobiology”, 45 (3), 2012, s. 605–620, DOI10.1007/s12035-012-8278-5, PMID22610946.
  • Craig W. Berridge, David M. Devilbiss, Psychostimulants as cognitive enhancers: the prefrontal cortex, catecholamines, and attention-deficit/hyperactivity disorder, „Biological Psychiatry”, 69 (12), 2011, e101–111, DOI10.1016/j.biopsych.2010.06.023, PMID20875636, PMCIDPMC3012746.
  • S.K. Jääskeläinen i inni, Role of the dopaminergic system in chronic pain – a fluorodopa-PET study, „Pain”, 90 (3), 2001, s. 257–260, DOI10.1016/S0304-3959(00)00409-7, PMID11207397.
  • Patrick B. Wood, Role of central dopamine in pain and analgesia, „Expert Review of Neurotherapeutics”, 8 (5), 2008, s. 781–797, DOI10.1586/14737175.8.5.781, PMID18457535.
  • J.W. Maas i inni, Schizophrenia, Psychosis, and Cerebral Spinal Fluid Homovanillic Acid Concentrations, „Schizophrenia Bulletin”, 23 (1), 1997, s. 147–154, DOI10.1093/schbul/23.1.147, PMID9050120 (ang.).
  • M.J. Durcan i inni, Is clozapine selective for the dopamine D4 receptor?, „Life Sciences”, 57 (18), 1995, PL275–283, DOI10.1016/0024-3205(95)02151-8, PMID7475902 (ang.).
  • J.A. Lieberman, J.M. Kane, J. Alvir, Provocative tests with psychostimulant drugs in schizophrenia, „Psychopharmacology”, 91 (4), 1987, s. 415–433, DOI10.1007/BF00216006, PMID2884687 (ang.).
  • O. Benkert i inni, Altered tyrosine daytime plasma levels in endogenous depressive patients, „Archives of General Psychiatry”, 25 (4), 1971, s. 359–363, DOI10.1001/archpsyc.1971.01750160071013, PMID5116991 (ang.).
  • G.G. Nomikos i inni, Acute effects of bupropion on extracellular dopamine concentrations in rat striatum and nucleus accumbens studied by in vivo microdialysis, „Neuropsychopharmacology”, 2 (4), 1989, s. 273–279, PMID2482026 (ang.).
  • F.R. Schneier i inni, Low dopamine D(2) receptor binding potential in social phobia, „The American Journal of Psychiatry”, 157 (3), 2000, s. 457–459, DOI10.1176/appi.ajp.157.3.457, PMID10698826.

pubchem.ncbi.nlm.nih.gov

psychiatryonline.org

ajp.psychiatryonline.org

rcpsych.org

bjp.rcpsych.org

sigmaaldrich.com

web.archive.org

williams.edu