Większość słowników, leksykonów i encyklopedii definiuje enzymy jako cząsteczki białkowe. Jednak obecnie znaczenie tego słowa jest rozszerzane na biokatalizatory ogólnie, w tym rybozymy i inne katalizatory niebiałkowe. Za przyjęciem tak rozszerzonej definicji przemawia m.in. fakt, że rybozymy mają nadawane numery zgodne z nomenklaturą EC, a także są katalogowane i nazywane zwyczajowo, jak enzymy białkowe. Zobacz też definicję terminu według IUPAC.
Groves J.T. Artificial enzymes. The importance of being selective. „Nature”. 389 (6649), s. 329–330, 1997. DOI: 10.1038/38602. PMID: 9311771.
Manchester K.L., Pasteur L. Louis Pasteur (1822–1895)--chance and the prepared mind. „Trends Biotechnol”. 12 (13), s. 511–515, 1996. DOI: 10.1016/S0167-7799(00)89014-9. PMID: 8595136.
Blake C.C., Koenig D.F., Mair G.A., North A.C., Phillips D.C., Sarma V.R. Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Angstrom resolution. „Nature”. 206 (4986), s. 757–761, 1966. DOI: 10.1038/206757a0. PMID: 5891407.
Kruger K., Grabowski P.J., Zaug A.J., Sands J., Gottschling D.E., Cech T.R. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. „Cell”. 1, s. 147–145, 1982. DOI: 10.1016/0092-8674(82)90414-7. PMID: 6297745.
Jaeger K.E., Eggert T. Enantioselective biocatalysis optimized by directed evolution. „Curr Opin Biotechnol”. 4 (15), s. 305–313, 2004. DOI: 10.1016/j.copbio.2004.06.007. PMID: 15358000.
Shevelev I.V., Hübscher U. The 3' 5' exonucleases. „Nat Rev Mol Cell Biol”. 5 (3), s. 364–376, 2002. DOI: 10.1038/nrm804. PMID: 11988770.
McCulloch S.D., Kunkel T.A. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. „Cell research”. 1 (18), s. 148–161, 2008. DOI: 10.1038/cr.2008.4. PMID: 18166979.
Zenkin N., Yuzenkova Y., Severinov K. Transcript-assisted transcriptional proofreading. „Science”. 313 (5786), s. 518–520, 2006. DOI: 10.1126/science.1127422. PMID: 16873663.
Rodnina M.V., Wintermeyer W. Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. „Annu Rev Biochem”. 70, s. 415–435, 2002. DOI: 10.1146/annurev.biochem.70.1.415. PMID: 11395413.
Ogston A.G. Interpretation of experiments on metabolic processes, using isotopic tracker elements. „Nature”. Dec 18/4129, s. 963, 1948. DOI: 10.1038/162963b0. PMID: 18225319.
Kafri R., Lancet D. Probability Rule for Chiral Recognition. „Chirality”. 16, s. 369–378, 2004. DOI: 10.1002/chir.20049. PMID: 15190582.
Warshel A., Sharma P.K., Kato M., Xiang Y., Liu H., Olsson M.H. Electrostatic basis for enzyme catalysis. „Chem. Rev.”. 106 (8), s. 3210–3235, 2006. DOI: 10.1021/cr0503106. PMID: 16895325.
Eisenmesser E.Z., Bosco D.A., Akke M., Kern D. Enzyme dynamics during catalysis. „Science”. 295 (5559), s. 1520–1523, 2002. DOI: 10.1126/science.1066176. PMID: 11859194.
Agarwal P.K. Role of protein dynamics in reaction rate enhancement by enzymes. „J Am Chem Soc.”. 127 (43), s. 15248–15256, 2005. DOI: 10.1021/ja055251s. PMID: 16248667.
Eisenmesser E.Z., Millet O., Labeikovsky W., Korzhnev D.M., Wolf-Watz M., Bosco D.A., Skalicky J.J., Kay L.E., Kern D. Intrinsic dynamics of an enzyme underlies catalysis. „Nature”. 438 (7064), s. 117–121, 2005. DOI: 10.1038/nature04105. PMID: 16267559.
Agarwal P.K., Geist A., Gorin A. Protein dynamics and enzymatic catalysis: investigating the peptidyl-prolyl cis-trans isomerization activity of cyclophilin A. „Biochemistry”. 33 (43), s. 10605–10618, 2004. DOI: 10.1021/bi0495228. PMID: 15311922.
Olsson M.H.M., Parson W.W., Warshel A. Dynamical Contributions to Enzyme Catalysis: Critical Tests of A Popular Hypothesis. „Chem. Rev”. 105, s. 1737–1756, 2006. DOI: 10.1021/cr040427e. PMID: 16683752.
Garcia-Viloca M., Gao J., Karplus M., Truhlar D.G. How enzymes work: analysis by modern rate theory and computer simulations. „Science”. 303, s. 186–195, 2004. DOI: 10.1126/science.1088172. PMID: 14716003.
Olsson M.H., Siegbahn P.E., Warshel A. Simulations of the large kinetic isotope effect and the temperature dependence of the hydrogen atom transfer in lipoxygenase. „J. Am. Chem. Soc.”. 126, s. 2820–1828, 2004. DOI: 10.1021/ja037233l. PMID: 14995199.
Masgrau L., Roujeinikova A., Johannissen L.O., Hothi P., Basran J., Ranaghan K.E., Mulholland A.J., Sutcliffe M.J., Scrutton N.S., Leys D. Atomic Description of an Enzyme Reaction Dominated by Proton Tunneling. „Science”. 312, s. 237–241, 2006. DOI: 10.1126/science.1126002. PMID: 16614214.
Carr C.M., Kim P.S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. „Cell”. 73, s. 823–832, 2003. DOI: 10.1016/0092-8674(93)90260-W. PMID: 8500173.
James W.P., Trayhurn P. An integrated view of the metabolic and genetic basis for obesity. „Lancet”. 2 (7989), 1976. DOI: 10.1016/S0140-6736(76)90602-4. PMID: 61444.
Jackson R.S., Creemers J.W., Ohagi S., Raffin-Sanson M.L., Sanders L., Montague C.T., Hutton J.C., O’Rahilly S. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. „Nat Genet”. 3 (16), s. 303–306, 1997. DOI: 10.1038/ng0797-303. PMID: 9207799.
V. Bergoglio, T. Magnaldo. Nucleotide excision repair and related human diseases. „Genome Dyn”. 1, s. 35–52, 2006. DOI: 10.1159/000092499. PMID: 18724052.
R. Kurzrock, H.M. Kantarjian, B.J. Druker, M. Talpaz. Philadelphia chromosome-positive leukemias: from basic mechanisms to molecular therapeutics. „Ann Intern Med”. 138 (10), s. 819–830, 2003. DOI: 10.7326/0003-4819-138-10-200305200-00010. PMID: 12755554.
I. Lebrun, R. Marques-Porto, A.S. Pereira, A. Pereira i inni. Bacterial toxins: an overview on bacterial proteases and their action as virulence factors. „Mini Rev Med Chem”. 9 (7), s. 820–828, 2009. DOI: 10.2174/138955709788452603. PMID: 19519507.
Asbóth B., Náray-Szabó G. Mechanism of action of D-xylose isomerase. „Curr Protein Pept Sci”. 3 (1), s. 237–254, 2002. DOI: 10.2174/1389203003381333. PMID: 12369908.
LeonorL.MichaelisLeonorL. i inni, The original Michaelis constant: translation of the 1913 Michaelis-Menten paper, „Biochemistry”, 50 (39), 2011, s. 8264–8269, DOI: 10.1021/bi201284u, PMID: 21888353, PMCID: PMC3381512.
8.1. Enzymes Are Powerful and Highly Specific Catalysts. W: J.M. Berg, J.L Tymoczko, L Stryer: Biochemistry, 5th edition. New York: 2002. ISBN 0-7167-3051-0. [dostęp 2016-06-16]. Brak numerów stron w książce
Groves J.T. Artificial enzymes. The importance of being selective. „Nature”. 389 (6649), s. 329–330, 1997. DOI: 10.1038/38602. PMID: 9311771.
Manchester K.L., Pasteur L. Louis Pasteur (1822–1895)--chance and the prepared mind. „Trends Biotechnol”. 12 (13), s. 511–515, 1996. DOI: 10.1016/S0167-7799(00)89014-9. PMID: 8595136.
Blake C.C., Koenig D.F., Mair G.A., North A.C., Phillips D.C., Sarma V.R. Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Angstrom resolution. „Nature”. 206 (4986), s. 757–761, 1966. DOI: 10.1038/206757a0. PMID: 5891407.
Kruger K., Grabowski P.J., Zaug A.J., Sands J., Gottschling D.E., Cech T.R. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. „Cell”. 1, s. 147–145, 1982. DOI: 10.1016/0092-8674(82)90414-7. PMID: 6297745.
Jaeger K.E., Eggert T. Enantioselective biocatalysis optimized by directed evolution. „Curr Opin Biotechnol”. 4 (15), s. 305–313, 2004. DOI: 10.1016/j.copbio.2004.06.007. PMID: 15358000.
Shevelev I.V., Hübscher U. The 3' 5' exonucleases. „Nat Rev Mol Cell Biol”. 5 (3), s. 364–376, 2002. DOI: 10.1038/nrm804. PMID: 11988770.
McCulloch S.D., Kunkel T.A. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. „Cell research”. 1 (18), s. 148–161, 2008. DOI: 10.1038/cr.2008.4. PMID: 18166979.
Zenkin N., Yuzenkova Y., Severinov K. Transcript-assisted transcriptional proofreading. „Science”. 313 (5786), s. 518–520, 2006. DOI: 10.1126/science.1127422. PMID: 16873663.
Rodnina M.V., Wintermeyer W. Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. „Annu Rev Biochem”. 70, s. 415–435, 2002. DOI: 10.1146/annurev.biochem.70.1.415. PMID: 11395413.
Ogston A.G. Interpretation of experiments on metabolic processes, using isotopic tracker elements. „Nature”. Dec 18/4129, s. 963, 1948. DOI: 10.1038/162963b0. PMID: 18225319.
Kafri R., Lancet D. Probability Rule for Chiral Recognition. „Chirality”. 16, s. 369–378, 2004. DOI: 10.1002/chir.20049. PMID: 15190582.
Warshel A., Sharma P.K., Kato M., Xiang Y., Liu H., Olsson M.H. Electrostatic basis for enzyme catalysis. „Chem. Rev.”. 106 (8), s. 3210–3235, 2006. DOI: 10.1021/cr0503106. PMID: 16895325.
Eisenmesser E.Z., Bosco D.A., Akke M., Kern D. Enzyme dynamics during catalysis. „Science”. 295 (5559), s. 1520–1523, 2002. DOI: 10.1126/science.1066176. PMID: 11859194.
Agarwal P.K. Role of protein dynamics in reaction rate enhancement by enzymes. „J Am Chem Soc.”. 127 (43), s. 15248–15256, 2005. DOI: 10.1021/ja055251s. PMID: 16248667.
Eisenmesser E.Z., Millet O., Labeikovsky W., Korzhnev D.M., Wolf-Watz M., Bosco D.A., Skalicky J.J., Kay L.E., Kern D. Intrinsic dynamics of an enzyme underlies catalysis. „Nature”. 438 (7064), s. 117–121, 2005. DOI: 10.1038/nature04105. PMID: 16267559.
Agarwal P.K., Geist A., Gorin A. Protein dynamics and enzymatic catalysis: investigating the peptidyl-prolyl cis-trans isomerization activity of cyclophilin A. „Biochemistry”. 33 (43), s. 10605–10618, 2004. DOI: 10.1021/bi0495228. PMID: 15311922.
Olsson M.H.M., Parson W.W., Warshel A. Dynamical Contributions to Enzyme Catalysis: Critical Tests of A Popular Hypothesis. „Chem. Rev”. 105, s. 1737–1756, 2006. DOI: 10.1021/cr040427e. PMID: 16683752.
LeonorL.MichaelisLeonorL. i inni, The original Michaelis constant: translation of the 1913 Michaelis-Menten paper, „Biochemistry”, 50 (39), 2011, s. 8264–8269, DOI: 10.1021/bi201284u, PMID: 21888353, PMCID: PMC3381512.
G.E.G.E.BriggsG.E.G.E., J.B.J.B.HaldaneJ.B.J.B., A Note on the Kinetics of Enzyme Action, „The Biochemical Journal”, 19 (2), 1925, s. 338–339, PMID: 16743508, PMCID: PMC1259181.
Garcia-Viloca M., Gao J., Karplus M., Truhlar D.G. How enzymes work: analysis by modern rate theory and computer simulations. „Science”. 303, s. 186–195, 2004. DOI: 10.1126/science.1088172. PMID: 14716003.
Olsson M.H., Siegbahn P.E., Warshel A. Simulations of the large kinetic isotope effect and the temperature dependence of the hydrogen atom transfer in lipoxygenase. „J. Am. Chem. Soc.”. 126, s. 2820–1828, 2004. DOI: 10.1021/ja037233l. PMID: 14995199.
Masgrau L., Roujeinikova A., Johannissen L.O., Hothi P., Basran J., Ranaghan K.E., Mulholland A.J., Sutcliffe M.J., Scrutton N.S., Leys D. Atomic Description of an Enzyme Reaction Dominated by Proton Tunneling. „Science”. 312, s. 237–241, 2006. DOI: 10.1126/science.1126002. PMID: 16614214.
Poulin R., Lu L., Ackermann B., Bey P., Pegg A.E. Mechanism of the irreversible inactivation of mouse ornithine decarboxylase by alpha-difluoromethylornithine. Characterization of sequences at the inhibitor and coenzyme binding sites. „J Biol Chem”. 267 (1), s. 150–158, 1992. PMID: 1730582.
Carr C.M., Kim P.S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. „Cell”. 73, s. 823–832, 2003. DOI: 10.1016/0092-8674(93)90260-W. PMID: 8500173.
James W.P., Trayhurn P. An integrated view of the metabolic and genetic basis for obesity. „Lancet”. 2 (7989), 1976. DOI: 10.1016/S0140-6736(76)90602-4. PMID: 61444.
Jackson R.S., Creemers J.W., Ohagi S., Raffin-Sanson M.L., Sanders L., Montague C.T., Hutton J.C., O’Rahilly S. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. „Nat Genet”. 3 (16), s. 303–306, 1997. DOI: 10.1038/ng0797-303. PMID: 9207799.
V. Bergoglio, T. Magnaldo. Nucleotide excision repair and related human diseases. „Genome Dyn”. 1, s. 35–52, 2006. DOI: 10.1159/000092499. PMID: 18724052.
R. Kurzrock, H.M. Kantarjian, B.J. Druker, M. Talpaz. Philadelphia chromosome-positive leukemias: from basic mechanisms to molecular therapeutics. „Ann Intern Med”. 138 (10), s. 819–830, 2003. DOI: 10.7326/0003-4819-138-10-200305200-00010. PMID: 12755554.
I. Lebrun, R. Marques-Porto, A.S. Pereira, A. Pereira i inni. Bacterial toxins: an overview on bacterial proteases and their action as virulence factors. „Mini Rev Med Chem”. 9 (7), s. 820–828, 2009. DOI: 10.2174/138955709788452603. PMID: 19519507.
Asbóth B., Náray-Szabó G. Mechanism of action of D-xylose isomerase. „Curr Protein Pept Sci”. 3 (1), s. 237–254, 2002. DOI: 10.2174/1389203003381333. PMID: 12369908.
Eduard Buchner Biography. W: Nobel Lectures, Chemistry 1901–1921. Amsterdam: Elsevier Publishing Company, 1966. Brak numerów stron w książce
Cell-free fermentation. W: Eduard Buchner: Nobel Lectures, Chemistry 1901–1921. Amsterdam: Elsevier Publishing Company, 1966. Brak numerów stron w książce
G.P. Moss: Recommendations of the Nomenclature Committee. [w:] International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes by the Reactions they Catalyse [on-line]. [dostęp 2007-09-10]. [zarchiwizowane z tego adresu (2017-09-05)].
Władysław Kopaliński: enzymy. [w:] Słownik Wyrazów Obcych [on-line]. [dostęp 2014-03-13]. [zarchiwizowane z tego adresu (2015-03-31)].
ferment. [w:] Słownik wyrazów obcych i zwrotów obcojęzycznych Władysława Kopalińskiego [on-line]. [dostęp 2008-01-12]. [zarchiwizowane z tego adresu (2015-03-30)].
ferment. [w:] Słownik wyrazów obcych i zwrotów obcojęzycznych Władysława Kopalińskiego [on-line]. [dostęp 2008-01-12]. [zarchiwizowane z tego adresu (2015-03-30)].
G.P. Moss: Recommendations of the Nomenclature Committee. [w:] International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes by the Reactions they Catalyse [on-line]. [dostęp 2007-09-10]. [zarchiwizowane z tego adresu (2017-09-05)].