Fosforylacja fotosyntetyczna (Polish Wikipedia)

Analysis of information sources in references of the Wikipedia article "Fosforylacja fotosyntetyczna" in Polish language version.

refsWebsite
Global rank Polish rank
4th place
7th place
2nd place
6th place
1,734th place
2,851st place

core.ac.uk

doi.org

  • Ferreira KN., Iverson TM., Maghlaoui K., Barber J., Iwata S. Architecture of the photosynthetic oxygen-evolving center. „Science (New York, N.Y.)”. 5665 (303), s. 1831–1838, marzec 2004. DOI: 10.1126/science.1093087. PMID: 14764885. 
  • Iwata S., Barber J. Structure of photosystem II and molecular architecture of the oxygen-evolving centre. „Current opinion in structural biology”. 4 (14), s. 447–453, sierpień 2004. DOI: 10.1016/j.sbi.2004.07.002. PMID: 15313239. 
  • Loll B., Kern J., Saenger W., Zouni A., Biesiadka J. Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II. „Nature”. 7070 (438), s. 1040–1044, grudzień 2005. DOI: 10.1038/nature04224. PMID: 16355230. 
  • Nugent JH., Ball RJ., Evans MC. Photosynthetic water oxidation: the role of tyrosine radicals. „Biochimica et biophysica acta”. 1–3 (1655), s. 217–221, kwiecień 2004. DOI: 10.1016/j.bbabio.2003.09.015. PMID: 15100034. 
  • Pujols-Ayala I., Barry B.A. Tyrosyl radicals in Photosystem II. „Biochimica et Biophysica Acta (BBA) – Bioenergetics”. 1655, s. 205–216, 2004. DOI: 10.1016/j.bbabio.2003.07.010. 
  • Charlot MF., Boussac A., Blondin G. Towards a spin coupling model for the Mn4 cluster in Photosystem II. „Biochimica et biophysica acta”. 1 (1708), s. 120–132, czerwiec 2005. DOI: 10.1016/j.bbabio.2005.01.006. PMID: 15949989. 
  • Renger G. Coupling of electron and proton transfer in oxidative water cleavage in photosynthesis. „Biochimica et biophysica acta”. 1–3 (1655), s. 195–204, kwiecień 2004. DOI: 10.1016/j.bbabio.2003.07.007. PMID: 15100032. 
  • Kenneth S., Junko Y., Vittal Y. X-ray spectroscopy of the Mn4Ca cluster in the water-oxidation complex of Photosystem II. „Photosynthesis Research”. 1 (85), s. 73–86, 2005. DOI: 10.1007/s11120-005-0638-9. 
  • W. Kühlbrandt, D.N. Wang, Y. Fujiyoshi. Atomic model of plant light-harvesting complex by electron crystallography. „Nature”. 367 (6464), s. 614–621, Feb 1994. DOI: 10.1038/367614a0. PMID: 8107845. 
  • Z. Liu, H. Yan, K. Wang, T. Kuang i inni. Crystal structure of spinach major light-harvesting complex at 2.72 A resolution. „Nature”. 428 (6980), s. 287–292, Mar 2004. DOI: 10.1038/nature02373. PMID: 15029188. 
  • A.V. Ruban, M. Wentworth, A.E. Yakushevska, J. Andersson i inni. Plants lacking the main light-harvesting complex retain photosystem II macro-organization. „Nature”. 421 (6923), s. 648–652, Feb 2003. DOI: 10.1038/nature01344. PMID: 12571599. 
  • D. Elrad, A.R. Grossman. A genome’s-eye view of the light-harvesting polypeptides of Chlamydomonas reinhardtii. „Curr Genet”. 45 (2), s. 61–75, Feb 2004. DOI: 10.1007/s00294-003-0460-x. PMID: 14652691. 
  • C.X. Hou, E. Rintamäki, E.M. Aro. Ascorbate-mediated LHCII protein phosphorylation--LHCII kinase regulation in light and in darkness. „Biochemistry”. 42 (19), s. 5828–5836, May 2003. DOI: 10.1021/bi0343119. PMID: 12741841. 
  • A.J. Ouellette, B.A. Barry. Tandem mass spectrometric identification of spinach Photosystem II light-harvesting components. „Photosynth Res”. 72 (2), s. 159–173, 2002. DOI: 10.1023/A:1016132700844. PMID: 16228515. 
  • S. Storf, E.J. Stauber, M. Hippler, V.H. Schmid. Proteomic analysis of the photosystem I light-harvesting antenna in tomato (Lycopersicon esculentum). „Biochemistry”. 43 (28), s. 9214–9224, Jul 2004. DOI: 10.1021/bi0498196. PMID: 15248779. 
  • M. Wentworth, A.V. Ruban, P. Horton. The functional significance of the monomeric and trimeric states of the photosystem II light harvesting complexes. „Biochemistry”. 43 (2), s. 501–509, Jan 2004. DOI: 10.1021/bi034975i. PMID: 14717605. 
  • J. Linnanto, J. Martiskainen, V. Lehtovuori, J. Ihalainen i inni. Excitation energy transfer in the LHC-II trimer: a model based on the new 2.72 A structure. „Photosynth Res”. 87 (3), s. 267–279, Mar 2006. DOI: 10.1007/s11120-005-9004-1. PMID: 16450050. 
  • Dekker JP., Boekema EJ. Supramolecular organization of thylakoid membrane proteins in green plants. „Biochimica et biophysica acta”. 1–2 (1706), s. 12–39, styczeń 2005. DOI: 10.1016/j.bbabio.2004.09.009. PMID: 15620363. 
  • J. Nield, E.V. Orlova, E.P. Morris, B. Gowen i inni. 3D map of the plant photosystem II supercomplex obtained by cryoelectron microscopy and single particle analysis. „Nat Struct Biol”. 7 (1), s. 44–47, Jan 2000. DOI: 10.1038/71242. PMID: 10625426. 
  • J. Nield, J. Barber. Refinement of the structural model for the Photosystem II supercomplex of higher plants. „Biochim Biophys Acta”. 1757 (5–6), s. 353–361, 2006. DOI: 10.1016/j.bbabio.2006.03.019. PMID: 16729961. 
  • S. Caffarri, R. Kouril, S. Kereïche, E.J. Boekema i inni. Functional architecture of higher plant photosystem II supercomplexes. „EMBO J”. 28 (19), s. 3052–3063, Oct 2009. DOI: 10.1038/emboj.2009.232. PMID: 19696744. 
  • Cramer WA., Zhang H. Consequences of the structure of the cytochrome b6f complex for its charge transfer pathways. „Biochimica et biophysica acta”. 5–6 (1757), s. 339–345, 2006. DOI: 10.1016/j.bbabio.2006.04.020. PMID: 16787635. 
  • Kurisu G., Zhang H., Smith JL., Cramer WA. Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. „Science (New York, N.Y.)”. 5647 (302), s. 1009–1014, listopad 2003. DOI: 10.1126/science.1090165. PMID: 14526088. 
  • Cramer WA., Zhang H., Yan J., Kurisu G., Smith JL. Evolution of photosynthesis: time-independent structure of the cytochrome b6f complex. „Biochemistry”. 20 (43), s. 5921–5929, maj 2004. DOI: 10.1021/bi049444o. PMID: 15147175. 
  • de Vitry C., Desbois A., Redeker V., Zito F., Wollman FA. Biochemical and spectroscopic characterization of the covalent binding of heme to cytochrome b6. „Biochemistry”. 13 (43), s. 3956–3968, kwiecień 2004. DOI: 10.1021/bi036093p. PMID: 15049703. 
  • Cramer WA., Yan J., Zhang H., Kurisu G., Smith JL. Structure of the cytochrome b6f complex: new prosthetic groups, Q-space, and the ‘hors d’oeuvres hypothesis’ for assembly of the complex. „Photosynthesis research”. 1 (85), s. 133–143, 2005. DOI: 10.1007/s11120-004-2149-5. PMID: 15977064. 
  • Stroebel D., Choquet Y., Popot JL., Picot D. An atypical haem in the cytochrome b(6)f complex. „Nature”. 6965 (426), s. 413–418, listopad 2003. DOI: 10.1038/nature02155. PMID: 14647374. 
  • Allen JF. Cytochrome b6f: structure for signalling and vectorial metabolism. „Trends in plant science”. 3 (9), s. 130–137, marzec 2004. DOI: 10.1016/j.tplants.2004.01.009. PMID: 15003236. 
  • Jensen P.E., Haldrup A., Rosgaard L., Scheller H.V. Molecular dissection of photosystem I in higher plants: topology, structure and function. „Physiologia Plantarum”. 9 (119), s. 313–321, 2003. DOI: 10.1034/j.1399-3054.2003.00157.x. 
  • Khrouchtchova A., Hansson M., Paakkarinen V., Vainonen JP., Zhang S., Jensen PE., Scheller HV., Vener AV., Aro EM., Haldrup A. A previously found thylakoid membrane protein of 14kDa (TMP14) is a novel subunit of plant photosystem I and is designated PSI-P. „FEBS letters”. 21 (579), s. 4808–4812, sierpień 2005. DOI: 10.1016/j.febslet.2005.07.061. PMID: 16109415. 
  • Jordan P., Fromme P., Witt HT., Klukas O., Saenger W., Krauss N. Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. „Nature”. 6840 (411), s. 909–917, czerwiec 2001. DOI: 10.1038/35082000. PMID: 11418848. 
  • Santabarbara S., Heathcote P., Evans MC. Modelling of the electron transfer reactions in Photosystem I by electron tunnelling theory: the phylloquinones bound to the PsaA and the PsaB reaction centre subunits of PS I are almost isoenergetic to the iron-sulfur cluster F(X). „Biochimica et biophysica acta”. 3 (1708), s. 283–310, lipiec 2005. DOI: 10.1016/j.bbabio.2005.05.001. PMID: 15975545. 
  • Ben-Shem A., Frolow F., Nelson N. Crystal structure of plant photosystem I. „Nature”. 6967 (426), s. 630–635, grudzień 2003. DOI: 10.1038/nature02200. PMID: 14668855. 
  • Jolley C., Ben-Shem A., Nelson N., Fromme P. Structure of plant photosystem I revealed by theoretical modeling. „The Journal of biological chemistry”. 39 (280), s. 33627–33636, wrzesień 2005. DOI: 10.1074/jbc.M500937200. PMID: 15955818. 
  • Zygadlo A., Jensen PE., Leister D., Scheller HV. Photosystem I lacking the PSI-G subunit has a higher affinity for plastocyanin and is sensitive to photodamage. „Biochimica et biophysica acta”. 2 (1708), s. 154–163, czerwiec 2005. DOI: 10.1016/j.bbabio.2005.02.003. PMID: 15953472. 
  • Kramer DM., Avenson TJ., Edwards GE. Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. „Trends in plant science”. 7 (9), s. 349–357, lipiec 2004. DOI: 10.1016/j.tplants.2004.05.001. PMID: 15231280. 
  • Bendall D.S, Manasse R.S. Cyclic photophosphorylation and electron transport. „Biochim Biophys Acta”. 1229, s. 23–38, 1995. DOI: 10.1016/0005-2728(94)00195-B. 
  • Peltier G., Cournac L. Chlororespiration. „Annual review of plant biology”, s. 523–550, 2002. DOI: 10.1146/annurev.arplant.53.100301.135242. PMID: 12227339. 
  • Rumeau D., Peltier G., Cournac L. Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. „Plant, cell & environment”. 9 (30), s. 1041–1051, wrzesień 2007. DOI: 10.1111/j.1365-3040.2007.01675.x. PMID: 17661746. 
  • Walker JE., Dickson VK. The peripheral stalk of the mitochondrial ATP synthase. „Biochimica et biophysica acta”. 5–6 (1757). s. 286–296. DOI: 10.1016/j.bbabio.2006.01.001. PMID: 16697972. 
  • K.-H. Siiss, O. Schmidt. Evidence for an α3, β3, γ, δ, I, II, ε, III5 subunit stoichiometry of chloroplast ATP synthetase complex (CFI- CFo). „FEBS Lett”. 144, s. 213–218, 1982. DOI: 10.1016/0014-5793(82)80640-6. 
  • Fromme P., Graber P., Salnikow J. Isolation and identification of a fourth subunit in the membrane part of the chloroplast ATP-synthase. „FEBS Lett”. 218, s. 27–30, 1987. DOI: 10.1016/0014-5793(87)81011-6. 
  • Seelert H., Poetsch A., Dencher NA., Engel A., Stahlberg H., Müller DJ. Structural biology. Proton-powered turbine of a plant motor. „Nature”. 6785 (405), s. 418–419, maj 2000. DOI: 10.1038/35013148. PMID: 10839529. 
  • Zimmermann B., Diez M., Börsch M., Gräber P. Subunit movements in membrane-integrated EF0F1 during ATP synthesis detected by single-molecule spectroscopy. „Biochimica et biophysica acta”. 5–6 (1757), s. 311–319, 2006. DOI: 10.1016/j.bbabio.2006.03.020. PMID: 16765907. 
  • Feniouk BA., Suzuki T., Yoshida M. The role of subunit epsilon in the catalysis and regulation of FOF1-ATP synthase. „Biochimica et biophysica acta”. 5–6 (1757), s. 326–338, 2006. DOI: 10.1016/j.bbabio.2006.03.022. PMID: 16701076. 
  • Rexroth S., Meyer Zu Tittingdorf JM., Schwassmann HJ., Krause F., Seelert H., Dencher NA. Dimeric H+-ATP synthase in the chloroplast of Chlamydomonas reinhardtii. „Biochimica et biophysica acta”. 3 (1658), s. 202–211, październik 2004. DOI: 10.1016/j.bbabio.2004.05.014. PMID: 15450958. 
  • Mullineaux C.W. Function and evolution of grana. „Trends in Plant Science”. 10 (11), s. 521–525, 2005. DOI: 10.1016/j.tplants.2005.09.001. 
  • Danielsson R., Suorsa M., Paakkarinen V., Albertsson PA., Styring S., Aro EM., Mamedov F. Dimeric and monomeric organization of photosystem II. Distribution of five distinct complexes in the different domains of the thylakoid membrane. „The Journal of biological chemistry”. 20 (281), s. 14241–14249, maj 2006. DOI: 10.1074/jbc.M600634200. PMID: 16537530. 
  • Ishikita H., Saenger W., Biesiadka J., Loll B., Knapp EW. How photosynthetic reaction centers control oxidation power in chlorophyll pairs P680, P700, and P870. „Proceedings of the National Academy of Sciences of the United States of America”. 26 (103), s. 9855–9860, czerwiec 2006. DOI: 10.1073/pnas.0601446103. PMID: 16788069. 
  • Heinnickel M., Golbeck JH. Heliobacterial photosynthesis. „Photosynthesis research”. 1 (92), s. 35–53, kwiecień 2007. DOI: 10.1007/s11120-007-9162-4. PMID: 17457690. 
  • Michel H., Deisenhofer J. Relevance of the photosynthetic reaction center from purple bacteria to the structure of Photosystem II. „Biochemistry”. 27, s. 1–7, 1988. DOI: 10.1021/bi00401a001. 
  • Olson John M. Chlorophyll Organization and Function in Green Photosynthetic Bacteria. „Photochemistry and Photobiology”. 67, s. 61–75, 1998. DOI: 10.1111/j.1751-1097.1998.tb05166.x. 
  • T.E. Meyer, M.A. Cusanovich. Discovery and characterization of electron transfer proteins in the photosynthetic bacteria. „Photosynth Res”. 76 (1–3), s. 111–126, 2003. DOI: 10.1023/A:1024910323089. PMID: 16228571. 
  • J Deisenhofer, H Michel. The Photosynthetic Reaction Center from the Purple Bacterium Rhodopseudomonas viridis. „Science”. 245 (4925), s. 1463–1473, Sep 1989. DOI: 10.1126/science.245.4925.1463. PMID: 17776797. 
  • G.S. Engel, T.R. Calhoun, E.L. Read, T.K. Ahn i inni. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. „Nature”. 446 (7137), s. 782–786, Apr 2007. DOI: 10.1038/nature05678. PMID: 17429397. 
  • J.M. Dawlaty, A. Ishizaki, A.K. De, G.R. Fleming. Microscopic quantum coherence in a photosynthetic-light-harvesting antenna. „Philos Transact A Math Phys Eng Sci”. 370 (1972), s. 3672–3691, Aug 2012. DOI: 10.1098/rsta.2011.0207. PMID: 22753820. 
  • G. Panitchayangkoon, D. Hayes, K.A. Fransted, J.R. Caram i inni. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. „Proc Natl Acad Sci U S A”. 107 (29), s. 12766–12770, Jul 2010. DOI: 10.1073/pnas.1005484107. PMID: 20615985. 
  • Y.C. Cheng, G.R. Fleming. Dynamics of light harvesting in photosynthesis. „Annu Rev Phys Chem”. 60, s. 241–262, 2009. DOI: 10.1146/annurev.physchem.040808.090259. PMID: 18999996. 
  • X. Gao, Y. Xin, P.D. Bell, J. Wen i inni. Structural analysis of alternative complex III in the photosynthetic electron transfer chain of Chloroflexus aurantiacus. „Biochemistry”. 49 (31), s. 6670–6679, Aug 2010. DOI: 10.1021/bi100858k. PMID: 20614874. 
  • Trebst A. The topology of the plastoquinone and herbicide binding peptides of photosystem II in the thylakoid membrane. „Z. Naturforsch.”. 41c, s. 240–245, 1986. DOI: 10.1515/znc-1986-1-235. 
  • Sau-Man Poa E., Ho J.W. Paraquat Affects Light-Induced Proton Transport Through Chloroplast Membranes in Spinach. „Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology”. 118 (1), s. 65–69, 1997. DOI: 10.1016/S0742-8413(97)00032-7. 
  • Harris N., Dodge A. D. The effect of paraquat on flax cotyledon leaves: Physiological and biochemical changes. „Planta”. 3 (104), s. 210–219, 1972. DOI: 10.1007/BF00387076. 
  • Mauzerall D. Light, iron, Sam Granick and the origin of life. „Photosynthesis Research”. 2 (33), s. 163–170, 1992. DOI: 10.1007/BF00039178. 
  • Govindjee D., Krogmann. Discoveries in oxygenic photosynthesis (1727-2003): a perspective. „Photosynthesis research”. 1–3 (80), s. 15–57, 2004. DOI: 10.1023/B:PRES.0000030443.63979.e6. PMID: 16328809. 
  • Daniel I. Arnon, F. R. Whatley, M. B. Allen. Photosynthesis by Isolated Chloroplasts. II. Photosynthetic Phosphorylation, the Conversion of Light into Phosphate Bond Energy. „J. Am. Chem. Soc.”. 76 (24), s. 6324–6329, 1954. DOI: 10.1021/ja01653a025. 
  • Jagendorf AT. Photophosphorylation and the chemiosmotic perspective. „Photosynthesis research”. 1–3 (73), s. 233–241, 2002. DOI: 10.1023/A:1020415601058. PMID: 16245126. 
  • Robert Emerson, Ruth Chalmers, Carl Cederstrand. Some factors influencing the long wave limit of photosynthesis. „Proc Natl Acad Sci U S A.”. 43 (1), s. 133–143, 1957. DOI: 10.1073/pnas.43.1.133. PMID: 16589986. 
  • Krogmann D.W., Jagendorf A.T., Avron M. Uncouplers of spinach chloroplast photophosphorylation. „Plant Physiology”. 34, s. 272–277, 1959. DOI: 10.1104/pp.34.3.272. PMID: 16655214. 
  • Hill R., Bendall F. Function of the Two Cytochrome Components in Chloroplasts: A Working Hypothesis. „Nature”. 186, s. 136–137, 1960. DOI: 10.1038/186136a0. 
  • S Katoh. Early research on the role of plastocyanin in photosynthesis. „Photosynthesis research”. 76 (1–3), s. 255–261, 2003. DOI: 10.1023/A:1024924711453. PMID: 16228585. 
  • Mitchell P. Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation. „Biol. Rev. Cambridge Phil Soc.”. 41, s. 445–502, 1966. DOI: 10.1016/j.bbabio.2011.09.018. 
  • Avron M. A coupling factor in photophosphorylation. „Biochim Biophys Acta”. 77, s. 699–702, 1963. DOI: 10.1016/0006-3002(63)90567-5. 
  • Bengis C., Nelson N. Purification and properties of the Photosystem I reaction center from chloroplasts. „The Journal of Biological Chemistry”. 250, s. 2783–2788, 1975. DOI: 10.1016/S0021-9258(19)41558-5. 
  • Thornber J.P. Chlorophyll-Proteins: Light-Harvesting and Reaction Center Components of Plants. „Annual Review of Plant Physiology”. 26, s. 127–158, 1975. DOI: 10.1146/annurev.pp.26.060175.001015. 
  • Andersson B., Anderson J.M. Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. „BBA – Bioenergetics”. 593 (2), s. 427–440, 1980. DOI: 10.1016/0005-2728(80)90078-X. 
  • V.V. Klimov. Discovery of pheophytin function in the photosynthetic energy conversion as the primary electron acceptor of Photosystem II. „Photosynth Res”. 76 (1–3), s. 247–253, 2003. DOI: 10.1023/A:1024990408747. PMID: 16228584. 
  • Bennett J. Phosphorylation of chloroplast membrane polypeptides. „Nature”. 269, s. 344–346, 1977. DOI: 10.1038/269344a0. 
  • Colman P. M., Freeman H. C., Guss J. M., Murata M., Norris V. A., Ramshaw J. A. M. & Venkatappa M. P. X-ray crystal structure analysis of plastocyanin at 2.7 Å resolution. „Nature”. 272, s. 319–324, 1978. DOI: 10.1038/272319a0. 
  • L. Bogorad. Photosynthesis research: advances through molecular biology – the beginnings, 1975-1980s and on... „Photosynth Res”. 76 (1–3), s. 13–33, 2003. DOI: 10.1023/A:1024957602990. PMID: 16228563. 
  • A. Verméglio. The two-electron gate in photosynthetic bacteria. „Photosynth Res”. 73 (1–3), s. 83–86, 2002. DOI: 10.1023/A:1020429114745. PMID: 16245107. 
  • Berthold D.A., Babcock G.T., Yocum C.F. A highly resolved, oxygen-evolving photosystem II preparation from spinach thylakoid membranes. EPR and electron-transport properties. „FEBS Letters”. 134 (2), s. 231–234, 1981. DOI: 10.1016/0014-5793(81)80608-4. 
  • Feher G. Three decades of research in bacterial photosynthesis and the road leading to it: A personal account. „Photosynthesis Research”. 55 (55), s. 1–40, 1998. DOI: 10.1023/A:1005985019447. 
  • K. Satoh. The identification of the Photosystem II reaction center: a personal story. „Photosynth Res”. 76 (1–3), s. 233–240, 2003. DOI: 10.1023/A:1024933610778. PMID: 16228582. 
  • Tamura N., Cheniae G. Photoactivation of the water-oxidizing complex in Photosystem II membranes depleted of Mn and extrinsic proteins. I. Biochemical and kinetic characterization. „BBA – Bioenergetics”. 890 (2), s. 179–194, 1987. DOI: 10.1016/0005-2728(87)90019-3. 
  • Witt I., Witt H.T., Gerken S., Saenger W., Dekker J.P., Rogner M. Crystallization of reaction center I of photosynthesis Low-concentration crystallization of photoactive protein complexes from the cyanobacterium Synechococcus sp. „FEBS Letters”. 221 (2), s. 260–264, 1987. DOI: 10.1016/0014-5793(87)80937-7. 
  • G. Renger. Apparatus and mechanism of photosynthetic oxygen evolution: a personal perspective. „Photosynth Res”. 76 (1–3), s. 269–288, 2003. DOI: 10.1023/A:1024907012382. PMID: 16228587. 
  • M. Seibert, M.R. Wasielewski. The isolated Photosystem II reaction center: first attempts to directly measure the kinetics of primary charge separation. „Photosynth Res”. 76 (1–3), s. 263–268, 2003. DOI: 10.1023/A:1024986307839. PMID: 16228586. 
  • Parrett K.G., Mehari T., Golbeck J.H. Resolution and reconstitution of the cyanobacterial Photosystem I complex. „Biochimica et Biophysica Acta”. 1015 (2), s. 341–352, 1990. DOI: 10.1016/0005-2728(90)90039-7. 
  • Marcus R. A. Electron Transfer Reactions in Chemistry: Theory and Experiment (Nobel Lecture). „Angewandte Chemie International Edition in English”. 32, s. 1111–1121, 2003. DOI: 10.1002/anie.199311113. 
  • Kühlbrand W. Three-dimensional structure of the light-harvesting chlorophyll a/b-protein complex. „Nature”. 307, s. 478–480, 1984. DOI: 10.1038/307478a0. 
  • Kühlbrand W., Wang D.N. Three-dimensional structure of plant light-harvesting complex determined by electron crystallography. „Nature”. 350, s. 130–134, 1991. DOI: 10.1038/350130a0. 
  • P.D. Boyer, P.D. Boyer. A research journey with ATP synthase. „J Biol Chem”. 277 (42), s. 39045–39061, Oct 2002. DOI: 10.1074/jbc.X200001200. PMID: 12181328. 
  • A. Zouni, H.T. Witt, J. Kern, P. Fromme i inni. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 A resolution. „Nature”. 409 (6821), s. 739–743, Feb 2001. DOI: 10.1038/35055589. PMID: 11217865. 
  • N. Kamiya, J.R. Shen. Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-A resolution. „Proc Natl Acad Sci U S A”. 100 (1), s. 98–103, Jan 2003. DOI: 10.1073/pnas.0135651100. PMID: 12518057. 
  • N. Depège, S. Bellafiore, J.D. Rochaix. Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. „Science”. 299 (5612), s. 1572–1575, Mar 2003. DOI: 10.1126/science.1081397. PMID: 12624266. 

nih.gov

ncbi.nlm.nih.gov

  • Ferreira KN., Iverson TM., Maghlaoui K., Barber J., Iwata S. Architecture of the photosynthetic oxygen-evolving center. „Science (New York, N.Y.)”. 5665 (303), s. 1831–1838, marzec 2004. DOI: 10.1126/science.1093087. PMID: 14764885. 
  • Iwata S., Barber J. Structure of photosystem II and molecular architecture of the oxygen-evolving centre. „Current opinion in structural biology”. 4 (14), s. 447–453, sierpień 2004. DOI: 10.1016/j.sbi.2004.07.002. PMID: 15313239. 
  • Loll B., Kern J., Saenger W., Zouni A., Biesiadka J. Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II. „Nature”. 7070 (438), s. 1040–1044, grudzień 2005. DOI: 10.1038/nature04224. PMID: 16355230. 
  • Rappaport F., Guergova-Kuras M., Nixon PJ., Diner BA., Lavergne J. Kinetics and pathways of charge recombination in photosystem II. „Biochemistry”. 26 (41), s. 8518–8527, lipiec 2002. PMID: 12081503. 
  • Nugent JH., Ball RJ., Evans MC. Photosynthetic water oxidation: the role of tyrosine radicals. „Biochimica et biophysica acta”. 1–3 (1655), s. 217–221, kwiecień 2004. DOI: 10.1016/j.bbabio.2003.09.015. PMID: 15100034. 
  • Charlot MF., Boussac A., Blondin G. Towards a spin coupling model for the Mn4 cluster in Photosystem II. „Biochimica et biophysica acta”. 1 (1708), s. 120–132, czerwiec 2005. DOI: 10.1016/j.bbabio.2005.01.006. PMID: 15949989. 
  • Renger G. Coupling of electron and proton transfer in oxidative water cleavage in photosynthesis. „Biochimica et biophysica acta”. 1–3 (1655), s. 195–204, kwiecień 2004. DOI: 10.1016/j.bbabio.2003.07.007. PMID: 15100032. 
  • G. Jackowski, K. Pielucha. Heterogeneity of the main light-harvesting chlorophyll a/b-protein complex of photosystem II (LHCII) at the level of trimeric subunits. „J Photochem Photobiol B”. 64 (1), s. 45–54, Nov 2001. PMID: 11705729. 
  • G. Jackowski, K. Kacprzak, S. Jansson. Identification of Lhcb1/Lhcb2/Lhcb3 heterotrimers of the main light-harvesting chlorophyll a/b-protein complex of Photosystem II (LHC II). „Biochim Biophys Acta”. 1504 (2–3), s. 340–345, Apr 2001. PMID: 11245797. 
  • W. Kühlbrandt, D.N. Wang, Y. Fujiyoshi. Atomic model of plant light-harvesting complex by electron crystallography. „Nature”. 367 (6464), s. 614–621, Feb 1994. DOI: 10.1038/367614a0. PMID: 8107845. 
  • Z. Liu, H. Yan, K. Wang, T. Kuang i inni. Crystal structure of spinach major light-harvesting complex at 2.72 A resolution. „Nature”. 428 (6980), s. 287–292, Mar 2004. DOI: 10.1038/nature02373. PMID: 15029188. 
  • A.V. Ruban, M. Wentworth, A.E. Yakushevska, J. Andersson i inni. Plants lacking the main light-harvesting complex retain photosystem II macro-organization. „Nature”. 421 (6923), s. 648–652, Feb 2003. DOI: 10.1038/nature01344. PMID: 12571599. 
  • D. Elrad, A.R. Grossman. A genome’s-eye view of the light-harvesting polypeptides of Chlamydomonas reinhardtii. „Curr Genet”. 45 (2), s. 61–75, Feb 2004. DOI: 10.1007/s00294-003-0460-x. PMID: 14652691. 
  • C.X. Hou, E. Rintamäki, E.M. Aro. Ascorbate-mediated LHCII protein phosphorylation--LHCII kinase regulation in light and in darkness. „Biochemistry”. 42 (19), s. 5828–5836, May 2003. DOI: 10.1021/bi0343119. PMID: 12741841. 
  • A.J. Ouellette, B.A. Barry. Tandem mass spectrometric identification of spinach Photosystem II light-harvesting components. „Photosynth Res”. 72 (2), s. 159–173, 2002. DOI: 10.1023/A:1016132700844. PMID: 16228515. 
  • S. Storf, E.J. Stauber, M. Hippler, V.H. Schmid. Proteomic analysis of the photosystem I light-harvesting antenna in tomato (Lycopersicon esculentum). „Biochemistry”. 43 (28), s. 9214–9224, Jul 2004. DOI: 10.1021/bi0498196. PMID: 15248779. 
  • M. Wentworth, A.V. Ruban, P. Horton. The functional significance of the monomeric and trimeric states of the photosystem II light harvesting complexes. „Biochemistry”. 43 (2), s. 501–509, Jan 2004. DOI: 10.1021/bi034975i. PMID: 14717605. 
  • J. Linnanto, J. Martiskainen, V. Lehtovuori, J. Ihalainen i inni. Excitation energy transfer in the LHC-II trimer: a model based on the new 2.72 A structure. „Photosynth Res”. 87 (3), s. 267–279, Mar 2006. DOI: 10.1007/s11120-005-9004-1. PMID: 16450050. 
  • Dekker JP., Boekema EJ. Supramolecular organization of thylakoid membrane proteins in green plants. „Biochimica et biophysica acta”. 1–2 (1706), s. 12–39, styczeń 2005. DOI: 10.1016/j.bbabio.2004.09.009. PMID: 15620363. 
  • J. Nield, E.V. Orlova, E.P. Morris, B. Gowen i inni. 3D map of the plant photosystem II supercomplex obtained by cryoelectron microscopy and single particle analysis. „Nat Struct Biol”. 7 (1), s. 44–47, Jan 2000. DOI: 10.1038/71242. PMID: 10625426. 
  • J. Nield, J. Barber. Refinement of the structural model for the Photosystem II supercomplex of higher plants. „Biochim Biophys Acta”. 1757 (5–6), s. 353–361, 2006. DOI: 10.1016/j.bbabio.2006.03.019. PMID: 16729961. 
  • E.J. Boekema, B. Hankamer, D. Bald, J. Kruip i inni. Supramolecular structure of the photosystem II complex from green plants and cyanobacteria. „Proc Natl Acad Sci U S A”. 92 (1), s. 175–179, Jan 1995. PMID: 7816811. 
  • E.J. Boekema, H. Van Roon, J.F. Van Breemen, J.P. Dekker. Supramolecular organization of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. „Eur J Biochem”. 266 (2), s. 444–452, Dec 1999. PMID: 10561584. 
  • S. Caffarri, R. Kouril, S. Kereïche, E.J. Boekema i inni. Functional architecture of higher plant photosystem II supercomplexes. „EMBO J”. 28 (19), s. 3052–3063, Oct 2009. DOI: 10.1038/emboj.2009.232. PMID: 19696744. 
  • A.E. Yakushevska, P.E. Jensen, W. Keegstra, H. van Roon i inni. Supermolecular organization of photosystem II and its associated light-harvesting antenna in Arabidopsis thaliana. „Eur J Biochem”. 268 (23), s. 6020–6028, Dec 2001. PMID: 11732995. 
  • Cramer WA., Zhang H. Consequences of the structure of the cytochrome b6f complex for its charge transfer pathways. „Biochimica et biophysica acta”. 5–6 (1757), s. 339–345, 2006. DOI: 10.1016/j.bbabio.2006.04.020. PMID: 16787635. 
  • Kurisu G., Zhang H., Smith JL., Cramer WA. Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. „Science (New York, N.Y.)”. 5647 (302), s. 1009–1014, listopad 2003. DOI: 10.1126/science.1090165. PMID: 14526088. 
  • Cramer WA., Zhang H., Yan J., Kurisu G., Smith JL. Evolution of photosynthesis: time-independent structure of the cytochrome b6f complex. „Biochemistry”. 20 (43), s. 5921–5929, maj 2004. DOI: 10.1021/bi049444o. PMID: 15147175. 
  • de Vitry C., Desbois A., Redeker V., Zito F., Wollman FA. Biochemical and spectroscopic characterization of the covalent binding of heme to cytochrome b6. „Biochemistry”. 13 (43), s. 3956–3968, kwiecień 2004. DOI: 10.1021/bi036093p. PMID: 15049703. 
  • Cramer WA., Yan J., Zhang H., Kurisu G., Smith JL. Structure of the cytochrome b6f complex: new prosthetic groups, Q-space, and the ‘hors d’oeuvres hypothesis’ for assembly of the complex. „Photosynthesis research”. 1 (85), s. 133–143, 2005. DOI: 10.1007/s11120-004-2149-5. PMID: 15977064. 
  • Stroebel D., Choquet Y., Popot JL., Picot D. An atypical haem in the cytochrome b(6)f complex. „Nature”. 6965 (426), s. 413–418, listopad 2003. DOI: 10.1038/nature02155. PMID: 14647374. 
  • Allen JF. Cytochrome b6f: structure for signalling and vectorial metabolism. „Trends in plant science”. 3 (9), s. 130–137, marzec 2004. DOI: 10.1016/j.tplants.2004.01.009. PMID: 15003236. 
  • Khrouchtchova A., Hansson M., Paakkarinen V., Vainonen JP., Zhang S., Jensen PE., Scheller HV., Vener AV., Aro EM., Haldrup A. A previously found thylakoid membrane protein of 14kDa (TMP14) is a novel subunit of plant photosystem I and is designated PSI-P. „FEBS letters”. 21 (579), s. 4808–4812, sierpień 2005. DOI: 10.1016/j.febslet.2005.07.061. PMID: 16109415. 
  • Jordan P., Fromme P., Witt HT., Klukas O., Saenger W., Krauss N. Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. „Nature”. 6840 (411), s. 909–917, czerwiec 2001. DOI: 10.1038/35082000. PMID: 11418848. 
  • Santabarbara S., Heathcote P., Evans MC. Modelling of the electron transfer reactions in Photosystem I by electron tunnelling theory: the phylloquinones bound to the PsaA and the PsaB reaction centre subunits of PS I are almost isoenergetic to the iron-sulfur cluster F(X). „Biochimica et biophysica acta”. 3 (1708), s. 283–310, lipiec 2005. DOI: 10.1016/j.bbabio.2005.05.001. PMID: 15975545. 
  • Ben-Shem A., Frolow F., Nelson N. Crystal structure of plant photosystem I. „Nature”. 6967 (426), s. 630–635, grudzień 2003. DOI: 10.1038/nature02200. PMID: 14668855. 
  • Jolley C., Ben-Shem A., Nelson N., Fromme P. Structure of plant photosystem I revealed by theoretical modeling. „The Journal of biological chemistry”. 39 (280), s. 33627–33636, wrzesień 2005. DOI: 10.1074/jbc.M500937200. PMID: 15955818. 
  • Haldrup A., Naver H., Scheller HV. The interaction between plastocyanin and photosystem I is inefficient in transgenic Arabidopsis plants lacking the PSI-N subunit of photosystem I. „The Plant journal: for cell and molecular biology”. 6 (17), s. 689–698, marzec 1999. PMID: 10230065. 
  • Zygadlo A., Jensen PE., Leister D., Scheller HV. Photosystem I lacking the PSI-G subunit has a higher affinity for plastocyanin and is sensitive to photodamage. „Biochimica et biophysica acta”. 2 (1708), s. 154–163, czerwiec 2005. DOI: 10.1016/j.bbabio.2005.02.003. PMID: 15953472. 
  • Carrillo N., Ceccarelli EA. Open questions in ferredoxin-NADP+ reductase catalytic mechanism. „European journal of biochemistry / FEBS”. 9 (270), s. 1900–1915, maj 2003. PMID: 12709048. 
  • Kramer DM., Avenson TJ., Edwards GE. Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. „Trends in plant science”. 7 (9), s. 349–357, lipiec 2004. DOI: 10.1016/j.tplants.2004.05.001. PMID: 15231280. 
  • Peltier G., Cournac L. Chlororespiration. „Annual review of plant biology”, s. 523–550, 2002. DOI: 10.1146/annurev.arplant.53.100301.135242. PMID: 12227339. 
  • Rumeau D., Peltier G., Cournac L. Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. „Plant, cell & environment”. 9 (30), s. 1041–1051, wrzesień 2007. DOI: 10.1111/j.1365-3040.2007.01675.x. PMID: 17661746. 
  • Senior AE., Nadanaciva S., Weber J. The molecular mechanism of ATP synthesis by F1F0-ATP synthase. „Biochimica et biophysica acta”. 3 (1553), s. 188–211, luty 2002. PMID: 11997128. 
  • Weber J., Senior AE. ATP synthesis driven by proton transport in F1F0-ATP synthase. „FEBS letters”. 1 (545), s. 61–70, czerwiec 2003. PMID: 12788493. 
  • Walker JE., Dickson VK. The peripheral stalk of the mitochondrial ATP synthase. „Biochimica et biophysica acta”. 5–6 (1757). s. 286–296. DOI: 10.1016/j.bbabio.2006.01.001. PMID: 16697972. 
  • Grotjohann I., Graber P. Isolation and properties of the membrane-integrated part of the ATP-synthase from chloroplasts, CFo. „Biochim Biophys Acta”. 1017, s. 177–180, 1990. PMID: 10364459. 
  • Seelert H., Poetsch A., Dencher NA., Engel A., Stahlberg H., Müller DJ. Structural biology. Proton-powered turbine of a plant motor. „Nature”. 6785 (405), s. 418–419, maj 2000. DOI: 10.1038/35013148. PMID: 10839529. 
  • Zimmermann B., Diez M., Börsch M., Gräber P. Subunit movements in membrane-integrated EF0F1 during ATP synthesis detected by single-molecule spectroscopy. „Biochimica et biophysica acta”. 5–6 (1757), s. 311–319, 2006. DOI: 10.1016/j.bbabio.2006.03.020. PMID: 16765907. 
  • Feniouk BA., Suzuki T., Yoshida M. The role of subunit epsilon in the catalysis and regulation of FOF1-ATP synthase. „Biochimica et biophysica acta”. 5–6 (1757), s. 326–338, 2006. DOI: 10.1016/j.bbabio.2006.03.022. PMID: 16701076. 
  • Richter ML., Hein R., Huchzermeyer B. Important subunit interactions in the chloroplast ATP synthase. „Biochimica et biophysica acta”. 2–3 (1458), s. 326–342, maj 2000. PMID: 10838048. 
  • Hisabori T., Ueoka-Nakanishi H., Konno H., Koyama F. Molecular evolution of the modulator of chloroplast ATP synthase: origin of the conformational change dependent regulation. „FEBS letters”. 1 (545), s. 71–75, czerwiec 2003. PMID: 12788494. 
  • Rexroth S., Meyer Zu Tittingdorf JM., Schwassmann HJ., Krause F., Seelert H., Dencher NA. Dimeric H+-ATP synthase in the chloroplast of Chlamydomonas reinhardtii. „Biochimica et biophysica acta”. 3 (1658), s. 202–211, październik 2004. DOI: 10.1016/j.bbabio.2004.05.014. PMID: 15450958. 
  • Danielsson R., Albertsson PA., Mamedov F., Styring S. Quantification of photosystem I and II in different parts of the thylakoid membrane from spinach. „Biochimica et biophysica acta”. 1 (1608), s. 53–61, styczeń 2004. PMID: 14741585. 
  • Danielsson R., Suorsa M., Paakkarinen V., Albertsson PA., Styring S., Aro EM., Mamedov F. Dimeric and monomeric organization of photosystem II. Distribution of five distinct complexes in the different domains of the thylakoid membrane. „The Journal of biological chemistry”. 20 (281), s. 14241–14249, maj 2006. DOI: 10.1074/jbc.M600634200. PMID: 16537530. 
  • Kirchhoff H., Horstmann S., Weis E. Control of the photosynthetic electron transport by PQ diffusion microdomains in thylakoids of higher plants. „Biochimica et biophysica acta”. 1 (1459), s. 148–168, lipiec 2000. PMID: 10924908. 
  • Ishikita H., Saenger W., Biesiadka J., Loll B., Knapp EW. How photosynthetic reaction centers control oxidation power in chlorophyll pairs P680, P700, and P870. „Proceedings of the National Academy of Sciences of the United States of America”. 26 (103), s. 9855–9860, czerwiec 2006. DOI: 10.1073/pnas.0601446103. PMID: 16788069. 
  • Pierson BK., Thornber JP. Isolation and spectral characterization of photochemical reaction centers from the thermophilic green bacterium Chloroflexus aurantiacus strain J-10-f1. „Proceedings of the National Academy of Sciences of the United States of America”. 1 (80), s. 80–84, styczeń 1983. PMID: 16593269. 
  • Hauska G., Schoedl T., Remigy H., Tsiotis G. The reaction center of green sulfur bacteria(1). „Biochimica et biophysica acta”. 1–3 (1507), s. 260–277, październik 2001. PMID: 11687219. 
  • Noks PP., Lukashev EP., Kononenko AA., Venediktov PS., Rubin AB. [Possible role of macromolecular components in the functioning of photosynthetic reaction centers of purple bacteria]. „Molekuliarnaia biologiia”. 5 (11), s. 1090–1099, 1977. PMID: 109747. 
  • Ueda T., Ideguchi T., Kaino N., Kakuno T., Yamashita J., Horio T. Molecular organization of photochemical reaction complex in chromatophore membrane from Rhodospirillum rubrum as detected by immunochemical and proteolytic analyses. „Journal of biochemistry”. 4 (102), s. 755–765, październik 1987. PMID: 3125156. 
  • Olson JM., Miller M., D’Olieslager J. The asymmetry of P+ in bacterial reaction centers revealed by circular dichroism spectroscopy. „Biochemistry”. 46 (34), s. 15230–15234, listopad 1995. PMID: 7578138. 
  • Heinnickel M., Golbeck JH. Heliobacterial photosynthesis. „Photosynthesis research”. 1 (92), s. 35–53, kwiecień 2007. DOI: 10.1007/s11120-007-9162-4. PMID: 17457690. 
  • Nitschke W., Rutherford AW. Photosynthetic reaction centres: variations on a common structural theme?. „Trends in biochemical sciences”. 7 (16), s. 241–245, lipiec 1991. PMID: 1926331. 
  • Blankenship RE., Blankenship RE. Origin and early evolution of photosynthesis. „Photosynthesis research”, s. 91–111, 1992. PMID: 11538390. 
  • T.E. Meyer, M.A. Cusanovich. Discovery and characterization of electron transfer proteins in the photosynthetic bacteria. „Photosynth Res”. 76 (1–3), s. 111–126, 2003. DOI: 10.1023/A:1024910323089. PMID: 16228571. 
  • J Deisenhofer, H Michel. The Photosynthetic Reaction Center from the Purple Bacterium Rhodopseudomonas viridis. „Science”. 245 (4925), s. 1463–1473, Sep 1989. DOI: 10.1126/science.245.4925.1463. PMID: 17776797. 
  • J Deisenhofer, H Michel. Nobel lecture. The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. „EMBO J”. 8 (8), s. 2149–2170, Aug 1989. PMID: 2676514. 
  • R Huber. Nobel lecture. A structural basis of light energy and electron transfer in biology. „EMBO J”. 8 (8), s. 2125–2147, Aug 1989. PMID: 2676513. 
  • M. Büttner, D.L. Xie, H. Nelson, W. Pinther i inni. The photosystem I-like P840-reaction center of green S-bacteria is a homodimer. „Biochim Biophys Acta”. 1101 (2), s. 154–156, Jul 1992. PMID: 1633181. 
  • G.S. Engel, T.R. Calhoun, E.L. Read, T.K. Ahn i inni. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. „Nature”. 446 (7137), s. 782–786, Apr 2007. DOI: 10.1038/nature05678. PMID: 17429397. 
  • J.M. Dawlaty, A. Ishizaki, A.K. De, G.R. Fleming. Microscopic quantum coherence in a photosynthetic-light-harvesting antenna. „Philos Transact A Math Phys Eng Sci”. 370 (1972), s. 3672–3691, Aug 2012. DOI: 10.1098/rsta.2011.0207. PMID: 22753820. 
  • G. Panitchayangkoon, D. Hayes, K.A. Fransted, J.R. Caram i inni. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. „Proc Natl Acad Sci U S A”. 107 (29), s. 12766–12770, Jul 2010. DOI: 10.1073/pnas.1005484107. PMID: 20615985. 
  • Y.C. Cheng, G.R. Fleming. Dynamics of light harvesting in photosynthesis. „Annu Rev Phys Chem”. 60, s. 241–262, 2009. DOI: 10.1146/annurev.physchem.040808.090259. PMID: 18999996. 
  • N. Kusumoto, P. Sétif, K. Brettel, D. Seo i inni. Electron transfer kinetics in purified reaction centers from the green sulfur bacterium Chlorobium tepidum studied by multiple-flash excitation. „Biochemistry”. 38 (37), s. 12124–12137, Sep 1999. PMID: 10508417. 
  • M. Brugna, D. Albouy, W. Nitschke. Diversity of cytochrome bc complexes: example of the Rieske protein in green sulfur bacteria. „J Bacteriol”. 180 (14), s. 3719–3723, Jul 1998. PMID: 9658021. 
  • H. Oh-oka, S. Kakutani, S. Kamei, H. Matsubara i inni. Highly purified photosynthetic reaction center (PscA/cytochrome c551)2 complex of the green sulfur bacterium Chlorobium limicola. „Biochemistry”. 34 (40), s. 13091–13097, Oct 1995. PMID: 7548069. 
  • X. Gao, Y. Xin, P.D. Bell, J. Wen i inni. Structural analysis of alternative complex III in the photosynthetic electron transfer chain of Chloroflexus aurantiacus. „Biochemistry”. 49 (31), s. 6670–6679, Aug 2010. DOI: 10.1021/bi100858k. PMID: 20614874. 
  • Tischer W., Strotmann H. Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron transport. „Biochimica et biophysica acta”. 1 (460), s. 113–125, kwiecień 1977. PMID: 856261. 
  • Duke SO., Kenyon WH. Photosynthesis Is Not Involved in the Mechanism of Action of Acifluorfen in Cucumber (Cucumis sativus L.). „Plant physiology”. 3 (81), s. 882–888, lipiec 1986. PMID: 16664919. 
  • Baker NR., Long SP., Ort DR. Photosynthesis and temperature, with particular reference to effects on quantum yield. „Symposia of the Society for Experimental Biology”, s. 347–375, 1988. PMID: 3077864. 
  • Hartman H. Photosynthesis and the origin of life. „Origins of life and evolution of the biosphere: the journal of the International Society for the Study of the Origin of Life”. 4–6 (28), s. 515–521, październik 1998. PMID: 11536891. 
  • J.M. Olson, B.K. Pierson. Evolution of reaction centers in photosynthetic prokaryotes. „Int Rev Cytol”. 108, s. 209–248, 1987. PMID: 3312066. 
  • Meyer TE. Evolution of photosynthetic reaction centers and light harvesting chlorophyll proteins. „Bio Systems”. 3 (33), s. 167–175, 1994. PMID: 7888608. 
  • Pierre Y., Breyton C., Lemoine Y., Robert B., Vernotte C., Popot JL. On the presence and role of a molecule of chlorophyll a in the cytochrome b6 f complex. „The Journal of biological chemistry”. 35 (272), s. 21901–21908, sierpień 1997. PMID: 9268323. 
  • Poggese C., Polverino de Laureto P., Giacometti GM., Rigoni F., Barbato R. Cytochrome b6/f complex from the cyanobacterium Synechocystis 6803: evidence of dimeric organization and identification of chlorophyll-binding subunit. „FEBS letters”. 3 (414), s. 585–589, wrzesień 1997. PMID: 9323041. 
  • Xiong J., Bauer CE. A cytochrome b origin of photosynthetic reaction centers: an evolutionary link between respiration and photosynthesis. „Journal of molecular biology”. 5 (322), s. 1025–1037, październik 2002. PMID: 12367526. 
  • W.F. Vermaas, R.E. Blankenship. Evolution of heliobacteria: implications for photosynthetic reaction center complexes. „Photosynth Res”. 41, s. 285–294, 1994. PMID: 11539188. 
  • Govindjee D., Krogmann. Discoveries in oxygenic photosynthesis (1727-2003): a perspective. „Photosynthesis research”. 1–3 (80), s. 15–57, 2004. DOI: 10.1023/B:PRES.0000030443.63979.e6. PMID: 16328809. 
  • ARNON DI., ALLEN MB., WHATLEY FR. Photosynthesis by isolated chloroplasts. „Nature”. 4426 (174), s. 394–396, sierpień 1954. PMID: 13194001. 
  • ALLEN MB., WHATLEY FR., ARNON DI. Photosynthesis by isolated chloroplasts. VI. Rates of conversion of light into chemical energy in photosynthetic phosphorylation. „Biochimica et biophysica acta”. 1 (27), s. 16–23, styczeń 1958. PMID: 13510247. 
  • Jagendorf AT. Photophosphorylation and the chemiosmotic perspective. „Photosynthesis research”. 1–3 (73), s. 233–241, 2002. DOI: 10.1023/A:1020415601058. PMID: 16245126. 
  • KOK B. On the reversible absorption change at 705 mu in photosynthetic organisms. „Biochimica et biophysica acta”. 2 (22), s. 399–401, listopad 1956. PMID: 13382864. 
  • Robert Emerson, Ruth Chalmers, Carl Cederstrand. Some factors influencing the long wave limit of photosynthesis. „Proc Natl Acad Sci U S A.”. 43 (1), s. 133–143, 1957. DOI: 10.1073/pnas.43.1.133. PMID: 16589986. 
  • Emerson R., Rabinowitch E. Red Drop and Role of Auxiliary Pigments in Photosynthesis. „Plant physiology”. 4 (35), s. 477–485, lipiec 1960. PMID: 16655374. 
  • Krogmann D.W., Jagendorf A.T., Avron M. Uncouplers of spinach chloroplast photophosphorylation. „Plant Physiology”. 34, s. 272–277, 1959. DOI: 10.1104/pp.34.3.272. PMID: 16655214. 
  • VH LYNCH, CS FRENCH. Beta-carotene, an active component of chloroplasts. „Archives of biochemistry and biophysics”. 70 (2), s. 382–391, Aug 1957. PMID: 13459393. 
  • FL Crane. Isolation of Two Quinones with Coenzyme Q Activity from Alfalfa. „Plant physiology”. 34 (5), s. 546–551, Sep 1959. PMID: 16655271. 
  • NI Bishop. THE REACTIVITY OF A NATURALLY OCCURRING QUINONE (Q-255) IN PHOTOCHEMICAL REACTIONS OF ISOLATED CHLOROPLASTS. „Proceedings of the National Academy of Sciences of the United States of America”. 45 (12), s. 1696–1702, Dec 1959. PMID: 16590560. 
  • S. Govindjee, E. Rabinowitch. Two forms of chlorophyll a in vivo with distinct photochemical functions. „Science (New York, N.Y.)”. 132, s. 355–356, Aug 1960. PMID: 13828631. 
  • S Katoh. Early research on the role of plastocyanin in photosynthesis. „Photosynthesis research”. 76 (1–3), s. 255–261, 2003. DOI: 10.1023/A:1024924711453. PMID: 16228585. 
  • P Mitchell. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. „Nature”. 191, s. 144–148, Jul 1961. PMID: 13771349. 
  • P Mitchell. The protonmotive Q cycle: a general formulation. „FEBS letters”. 59 (2), s. 137–139, Nov 1975. PMID: 1227927. 
  • H.E. Akerlund, B. Andersson, P.A. Albertsson. Isolation of photosystem II enriched membrane vesicles from spinach chloroplasts by phase partition. „Biochim Biophys Acta”. 449 (3), s. 525–535, Dec 1976. PMID: 999851. 
  • B. Andersson, H.E. Akerlund, P.A. Albertsson. Light-induced reversible proton extrusion by spinach-chloroplast photosystem II vesicles isolated by phase partition. „FEBS Lett”. 77 (2), s. 141–145, May 1977. PMID: 862914. 
  • V.V. Klimov, A.V. Klevanik, V.A. Shuvalov, A.A. Kransnovsky. Reduction of pheophytin in the primary light reaction of photosystem II. „FEBS Lett”. 82 (2), s. 183–186, Oct 1977. PMID: 913587. 
  • V.V. Klimov. Discovery of pheophytin function in the photosynthetic energy conversion as the primary electron acceptor of Photosystem II. „Photosynth Res”. 76 (1–3), s. 247–253, 2003. DOI: 10.1023/A:1024990408747. PMID: 16228584. 
  • J. Bennett, K.E. Steinback, C.J. Arntzen. Chloroplast phosphoproteins: regulation of excitation energy transfer by phosphorylation of thylakoid membrane polypeptides. „Proc Natl Acad Sci U S A”. 77 (9), s. 5253–5257, Sep 1980. PMID: 6933557. 
  • L. Bogorad. Photosynthesis research: advances through molecular biology – the beginnings, 1975-1980s and on... „Photosynth Res”. 76 (1–3), s. 13–33, 2003. DOI: 10.1023/A:1024957602990. PMID: 16228563. 
  • A. Verméglio. The two-electron gate in photosynthetic bacteria. „Photosynth Res”. 73 (1–3), s. 83–86, 2002. DOI: 10.1023/A:1020429114745. PMID: 16245107. 
  • T. Tsukihira, K. Fukuyama, M. Nakamura, Y. Katsube i inni. X-ray analysis of a [2Fe-2S] ferrodoxin from Spirulina platensis. Main chain fold and location of side chains at 2.5 A resolution. „J Biochem”. 90 (6), s. 1763–1773, Dec 1981. PMID: 6801028. 
  • J. Deisenhofer, H. Michel. The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. „Biosci Rep”. 9 (4), s. 383–419, Aug 1989. PMID: 2686774. 
  • J. Deisenhofer, O. Epp, K. Miki, R. Huber i inni. X-ray structure analysis of a membrane protein complex. Electron density map at 3 A resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. „J Mol Biol”. 180 (2), s. 385–398, Dec 1984. PMID: 6392571. 
  • L.E. Fish, U. Kück, L. Bogorad. Two partially homologous adjacent light-inducible maize chloroplast genes encoding polypeptides of the P700 chlorophyll a-protein complex of photosystem I. „J Biol Chem”. 260 (3), s. 1413–1421, Feb 1985. PMID: 3881431. 
  • K. Satoh. The identification of the Photosystem II reaction center: a personal story. „Photosynth Res”. 76 (1–3), s. 233–240, 2003. DOI: 10.1023/A:1024933610778. PMID: 16228582. 
  • J. Biggins, P. Mathis. Functional role of vitamin K in photosystem I of the cyanobacterium Synechocystis 6803. „Biochemistry”. 27 (5), s. 1494–1500, Mar 1988. PMID: 3130097. 
  • G. Renger. Apparatus and mechanism of photosynthetic oxygen evolution: a personal perspective. „Photosynth Res”. 76 (1–3), s. 269–288, 2003. DOI: 10.1023/A:1024907012382. PMID: 16228587. 
  • M.R. Wasielewski, D.G. Johnson, M. Seibert, Govindjee. Determination of the primary charge separation rate in isolated photosystem II reaction centers with 500-fs time resolution. „Proc Natl Acad Sci U S A”. 86 (2), s. 524–528, Jan 1989. PMID: 16594012. 
  • M. Seibert, M.R. Wasielewski. The isolated Photosystem II reaction center: first attempts to directly measure the kinetics of primary charge separation. „Photosynth Res”. 76 (1–3), s. 263–268, 2003. DOI: 10.1023/A:1024986307839. PMID: 16228586. 
  • S.E. Martinez, D. Huang, A. Szczepaniak, W.A. Cramer i inni. Crystal structure of chloroplast cytochrome f reveals a novel cytochrome fold and unexpected heme ligation. „Structure”. 2 (2), s. 95–105, Feb 1994. PMID: 8081747. 
  • P.D. Boyer, P.D. Boyer. A research journey with ATP synthase. „J Biol Chem”. 277 (42), s. 39045–39061, Oct 2002. DOI: 10.1074/jbc.X200001200. PMID: 12181328. 
  • J.E. Walker. The regulation of catalysis in ATP synthase. „Curr Opin Struct Biol”. 4 (6), s. 912–918, Dec 1994. PMID: 7712295. 
  • C.M. Bruns, P.A. Karplus. Refined crystal structure of spinach ferredoxin reductase at 1.7 A resolution: oxidized, reduced and 2'-phospho-5'-AMP bound states. „J Mol Biol”. 247 (1), s. 125–145, Mar 1995. PMID: 7897656. 
  • H. Zhang, C.J. Carrell, D. Huang, V. Sled i inni. Characterization and crystallization of the lumen side domain of the chloroplast Rieske iron-sulfur protein. „J Biol Chem”. 271 (49), s. 31360–31366, Dec 1996. PMID: 8940143. 
  • C.J. Carrell, H. Zhang, W.A. Cramer, J.L. Smith. Biological identity and diversity in photosynthesis and respiration: structure of the lumen-side domain of the chloroplast Rieske protein. „Structure”. 5 (12), s. 1613–1625, Dec 1997. PMID: 9438861. 
  • A. Zouni, H.T. Witt, J. Kern, P. Fromme i inni. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 A resolution. „Nature”. 409 (6821), s. 739–743, Feb 2001. DOI: 10.1038/35055589. PMID: 11217865. 
  • N. Kamiya, J.R. Shen. Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-A resolution. „Proc Natl Acad Sci U S A”. 100 (1), s. 98–103, Jan 2003. DOI: 10.1073/pnas.0135651100. PMID: 12518057. 
  • N. Depège, S. Bellafiore, J.D. Rochaix. Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. „Science”. 299 (5612), s. 1572–1575, Mar 2003. DOI: 10.1126/science.1081397. PMID: 12624266.