Mitchell P. Keilin’s respiratory chain concept and its chemiosmotic consequences. „Science”. 206 (4423), s. 1148–1159, 1979. DOI: 10.1126/science.388618. PMID: 388618.
Page CC, Moser CC, Chen X, Dutton PL. Natural engineering principles of electron tunnelling in biological oxidation-reduction. „Nature”. 402 (6757), s. 47–52, 1999. DOI: 10.1038/46972. PMID: 10573417.
Leys D, Scrutton NS. Electrical circuitry in biology: emerging principles from protein structure. „Curr. Opin. Struct. Biol.”. 14 (6), s. 642–647, 2004. DOI: 10.1016/j.sbi.2004.10.002. PMID: 15582386.
Boxma B, de Graaf RM, van der Staay GW, et al. An anaerobic mitochondrion that produces hydrogen. „Nature”. 434 (7029), s. 74–79, 2005. DOI: 10.1038/nature03343. PMID: 15744302.
van der Giezen M., Tovar J., Clark CG. Mitochondrion-derived organelles in protists and fungi. „International review of cytology”. 244, s. 175–225, 2005. DOI: 10.1016/S0074-7696(05)44005-X. PMID: 16157181.
Lenaz G, Fato R, Genova M, Bergamini C, Bianchi C, Biondi A. Mitochondrial Complex I: structural and functional aspects. „Biochim Biophys Acta”. 1757 (9–10), s. 1406–1420, 2006. DOI: 10.1016/j.bbabio.2006.05.007. PMID: 16828051.
Baranova EA, Holt PJ, Sazanov LA. Projection structure of the membrane domain of Escherichia coli respiratory complex I at 8 A resolution. „J. Mol. Biol.”. 366 (1), s. 140–154, 2007. DOI: 10.1016/j.jmb.2006.11.026. PMID: 17157874.
Friedrich T, Böttcher B. The gross structure of the respiratory complex I: a Lego System. „Biochim. Biophys. Acta”. 1608 (1), s. 1–9, 2004. DOI: 10.1016/j.bbabio.2003.10.002. PMID: 14741580.
Brandt U, Kerscher S, Dröse S, Zwicker K, Zickermann V. Proton pumping by NADH: ubiquinone oxidoreductase. A redox driven conformational change mechanism?. „FEBS Lett.”. 545 (1), s. 9–17, 2003. DOI: 10.1016/S0014-5793(03)00387-9. PMID: 12788486.
Horsefield R, Iwata S, Byrne B. Complex II from a structural perspective. „Curr. Protein Pept. Sci.”. 5 (2), s. 107–118, 2004. DOI: 10.2174/1389203043486847. PMID: 15078221.
Kita K, Hirawake H, Miyadera H, Amino H, Takeo S. Role of complex II in anaerobic respiration of the parasite mitochondria from Ascaris suum and Plasmodium falciparum. „Biochim. Biophys. Acta”. 1553 (1–2), s. 123–139, 2002. DOI: 10.1016/S0005-2728(01)00237-7. PMID: 11803022.
Painter HJ, Morrisey JM, Mather MW, Vaidya AB. Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. „Nature”. 446 (7131), s. 88–91, 2007. DOI: 10.1038/nature05572. PMID: 17330044.
Zhang J, Frerman FE, Kim JJ. Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool. „Proc. Natl. Acad. Sci. U.S.A.”. 103 (44), s. 16212–16217, 2006. DOI: 10.1073/pnas.0604567103. PMID: 17050691.
Berry E, Guergova-Kuras M, Huang L, Crofts A. Structure and function of cytochrome bc complexes. „Annu Rev Biochem”. 69, s. 1005–1075, 2000. DOI: 10.1146/annurev.biochem.69.1.1005. PMID: 10966481.
Iwata S, Lee JW, Okada K, et al. Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. „Science”. 281 (5373), s. 64–71, 1998. DOI: 10.1126/science.281.5373.64. PMID: 9651245.
Hunte C, Palsdottir H, Trumpower BL. Protonmotive pathways and mechanisms in the cytochrome bc1 complex. „FEBS Lett.”. 545 (1), s. 39–46, 2003. DOI: 10.1016/S0014-5793(03)00391-0. PMID: 12788490.
Calhoun M, Thomas J, Gennis R. The cytochrome oxidase superfamily of redox-driven proton pumps. „Trends Biochem Sci”. 19 (8), s. 325–330, 1994. DOI: 10.1016/0968-0004(94)90071-X. PMID: 7940677.
Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S. TThe whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. „Science”. 272 (5265), s. 1136–1144, 1996. DOI: 10.1126/science.272.5265.1136. PMID: 8638158.
Yoshikawa S, Muramoto K, Shinzawa-Itoh K, et al. Proton pumping mechanism of bovine heart cytochrome c oxidase. „Biochim. Biophys. Acta”. 1757 (9–10), s. 1110–1116, 2006. DOI: 10.1016/j.bbabio.2006.06.004. PMID: 16904626.
McDonald A, Vanlerberghe G. Branched mitochondrial electron transport in the Animalia: presence of alternative oxidase in several animal phyla. „IUBMB Life”. 56 (6), s. 333–341, 2004. DOI: 10.1080/1521-6540400000876. PMID: 15370881.
Sluse FE, Jarmuszkiewicz W. Alternative oxidase in the branched mitochondrial respiratory network: an overview on structure, function, regulation, and role. „Braz. J. Med. Biol. Res.”. 31 (6), s. 733–747, 1998. DOI: 10.1590/S0100-879X1998000600003. PMID: 9698817.
Moore AL, Siedow JN. The regulation and nature of the cyanide-resistant alternative oxidase of plant mitochondria. „Biochim. Biophys. Acta”. 1059 (2), s. 121–140, 1991. DOI: 10.1016/S0005-2728(05)80197-5. PMID: 1883834.
Vanlerberghe GC, McIntosh L. Alternative oxidase: From Gene to Function. „Annual Review of Plant Physiology and Plant Molecular Biology”. 48, s. 703–734, 1997. DOI: 10.1146/annurev.arplant.48.1.703. PMID: 15012279.
Ito Y, Saisho D, Nakazono M, Tsutsumi N, Hirai A. Transcript levels of tandem-arranged alternative oxidase genes in rice are increased by low temperature. „Gene”. 203 (2), s. 121–129, 1997. DOI: 10.1016/S0378-1119(97)00502-7. PMID: 9426242.
Heinemeyer J, Braun HP, Boekema EJ, Kouril R. A structural model of the cytochrome C reductase/oxidase supercomplex from yeast mitochondria. „J. Biol. Chem.”. 282 (16), s. 12240–12248, 2007. DOI: 10.1074/jbc.M610545200. PMID: 17322303.
Nealson KH. Post-Viking microbiology: new approaches, new data, new insights. „Origins of life and evolution of the biosphere: the journal of the International Society for the Study of the Origin of Life”. 29 (1), s. 73–93, 1999. DOI: 10.1023/A:1006515817767. PMID: 11536899.
Unden G, Bongaerts J. Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. „Biochim. Biophys. Acta”. 1320 (3), s. 217–234, 1997. DOI: 10.1016/S0005-2728(97)00034-0. PMID: 9230919.
Cecchini G, Schröder I, Gunsalus RP, Maklashina E. Succinate dehydrogenase and fumarate reductase from Escherichia coli. „Biochim. Biophys. Acta”. 1553 (1–2), s. 140–157, 2002. DOI: 10.1016/S0005-2728(01)00238-9. PMID: 11803023.
Freitag A, Bock E. Energy conservation in Nitrobacter. „FEMS Microbiology Letters”. 66 (1–3), s. 157–162, 1990. DOI: 10.1111/j.1574-6968.1990.tb03989.x.
Van Walraven HS, Strotmann H, Schwarz O, Rumberg B. The H+/ATP coupling ratio of the ATP synthase from thiol-modulated chloroplasts and two cyanobacterial strains is four. „FEBS Lett.”. 379 (3), s. 309–313, 1996. DOI: 10.1016/0014-5793(95)01536-1. PMID: 8603713.
Yoshida M, Muneyuki E, Hisabori T. ATP synthase–a marvellous rotary engine of the cell. „Nat. Rev. Mol. Cell Biol.”. 2 (9), s. 669–677, 2001. DOI: 10.1038/35089509. PMID: 11533724.
Capaldi R, Aggeler R. Mechanism of the F(1)F(0)-type ATP synthase, a biological rotary motor. „Trends Biochem Sci”. 27 (3), s. 154–160, 2002. DOI: 10.1016/S0968-0004(01)02051-5. PMID: 11893513.
Dimroth P. Bacterial sodium ion-coupled energetics. „Antonie Van Leeuwenhoek”. 65 (4), s. 381–395, 1994. DOI: 10.1007/BF00872221. PMID: 7832594.
Müller V. An exceptional variability in the motor of archaeal A1A0 ATPases: from multimeric to monomeric rotors comprising 6–13 ion binding sites. „J. Bioenerg. Biomembr.”. 36 (1), s. 115–125, 2004. DOI: 10.1023/B:JOBB.0000019603.68282.04. PMID: 15168615.
Rattan SI. Theories of biological aging: genes, proteins, and free radicals. „Free Radic. Res.”. 40 (12), s. 1230–1238, 2006. DOI: 10.1080/10715760600911303. PMID: 17090411.
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. „Int. J. Biochem. Cell Biol.”. 39 (1), s. 44–84, 2007. DOI: 10.1016/j.biocel.2006.07.001. PMID: 16978905.
Raha S, Robinson B. Mitochondria, oxygen free radicals, disease and ageing. „Trends Biochem Sci”. 25 (10), s. 502–508, 2000. DOI: 10.1016/S0968-0004(00)01674-1. PMID: 11050436.
Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. „Nature”, s. 239–247, 2000. DOI: 10.1038/35041687. PMID: 11089981.
Joshi S, Huang YG. ATP synthase complex from bovine heart mitochondria: the oligomycin sensitivity conferring protein is essential for dicyclohexyl carbodiimide-sensitive ATPase. „Biochim. Biophys. Acta”. 1067 (2), s. 255–258, 1991. DOI: 10.1016/0005-2736(91)90051-9. PMID: 1831660.
Tsubaki M. Fourier-transform infrared study of cyanide binding to the Fea3-CuB binuclear site of bovine heart cytochrome c oxidase: implication of the redox-linked conformational change at the binuclear site. „Biochemistry”. 32 (1), s. 164–173, 1993. DOI: 10.1021/bi00052a022. PMID: 8380331.
Borecký J, Vercesi AE. Plant uncoupling mitochondrial protein and alternative oxidase: energy metabolism and stress. „Biosci. Rep.”. 25 (3–4), s. 271–286, 2005. DOI: 10.1007/s10540-005-2889-2. PMID: 16283557.
Kalckar HM. Origins of the concept oxidative phosphorylation. „Mol. Cell. Biochem.”. 5 (1–2), s. 55–63, 1974. DOI: 10.1007/BF01874172. PMID: 4279328.
Slater EC. Mechanism of Phosphorylation in the Respiratory Chain. „Nature”. 172 (4387), s. 975, 1953. DOI: 10.1038/172975a0.
Mitchell P. Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic type of Mechanism. „Nature”. 191 (4784), s. 144, 1961. DOI: 10.1038/191144a0. PMID: 13771349.
Mitchell P. Keilin’s respiratory chain concept and its chemiosmotic consequences. „Science”. 206 (4423), s. 1148–1159, 1979. DOI: 10.1126/science.388618. PMID: 388618.
Page CC, Moser CC, Chen X, Dutton PL. Natural engineering principles of electron tunnelling in biological oxidation-reduction. „Nature”. 402 (6757), s. 47–52, 1999. DOI: 10.1038/46972. PMID: 10573417.
Leys D, Scrutton NS. Electrical circuitry in biology: emerging principles from protein structure. „Curr. Opin. Struct. Biol.”. 14 (6), s. 642–647, 2004. DOI: 10.1016/j.sbi.2004.10.002. PMID: 15582386.
Boxma B, de Graaf RM, van der Staay GW, et al. An anaerobic mitochondrion that produces hydrogen. „Nature”. 434 (7029), s. 74–79, 2005. DOI: 10.1038/nature03343. PMID: 15744302.
van der Giezen M., Tovar J., Clark CG. Mitochondrion-derived organelles in protists and fungi. „International review of cytology”. 244, s. 175–225, 2005. DOI: 10.1016/S0074-7696(05)44005-X. PMID: 16157181.
Lenaz G, Fato R, Genova M, Bergamini C, Bianchi C, Biondi A. Mitochondrial Complex I: structural and functional aspects. „Biochim Biophys Acta”. 1757 (9–10), s. 1406–1420, 2006. DOI: 10.1016/j.bbabio.2006.05.007. PMID: 16828051.
Baranova EA, Holt PJ, Sazanov LA. Projection structure of the membrane domain of Escherichia coli respiratory complex I at 8 A resolution. „J. Mol. Biol.”. 366 (1), s. 140–154, 2007. DOI: 10.1016/j.jmb.2006.11.026. PMID: 17157874.
Friedrich T, Böttcher B. The gross structure of the respiratory complex I: a Lego System. „Biochim. Biophys. Acta”. 1608 (1), s. 1–9, 2004. DOI: 10.1016/j.bbabio.2003.10.002. PMID: 14741580.
Brandt U, Kerscher S, Dröse S, Zwicker K, Zickermann V. Proton pumping by NADH: ubiquinone oxidoreductase. A redox driven conformational change mechanism?. „FEBS Lett.”. 545 (1), s. 9–17, 2003. DOI: 10.1016/S0014-5793(03)00387-9. PMID: 12788486.
Horsefield R, Iwata S, Byrne B. Complex II from a structural perspective. „Curr. Protein Pept. Sci.”. 5 (2), s. 107–118, 2004. DOI: 10.2174/1389203043486847. PMID: 15078221.
Kita K, Hirawake H, Miyadera H, Amino H, Takeo S. Role of complex II in anaerobic respiration of the parasite mitochondria from Ascaris suum and Plasmodium falciparum. „Biochim. Biophys. Acta”. 1553 (1–2), s. 123–139, 2002. DOI: 10.1016/S0005-2728(01)00237-7. PMID: 11803022.
Painter HJ, Morrisey JM, Mather MW, Vaidya AB. Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. „Nature”. 446 (7131), s. 88–91, 2007. DOI: 10.1038/nature05572. PMID: 17330044.
Ramsay RR, Steenkamp DJ, Husain M. Reactions of electron-transfer flavoprotein and electron-transfer flavoprotein: ubiquinone oxidoreductase. „Biochem. J.”. 241 (3), s. 883–892, 1987. PMID: 3593226.
Zhang J, Frerman FE, Kim JJ. Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool. „Proc. Natl. Acad. Sci. U.S.A.”. 103 (44), s. 16212–16217, 2006. DOI: 10.1073/pnas.0604567103. PMID: 17050691.
Berry E, Guergova-Kuras M, Huang L, Crofts A. Structure and function of cytochrome bc complexes. „Annu Rev Biochem”. 69, s. 1005–1075, 2000. DOI: 10.1146/annurev.biochem.69.1.1005. PMID: 10966481.
Hunte C, Palsdottir H, Trumpower BL. Protonmotive pathways and mechanisms in the cytochrome bc1 complex. „FEBS Lett.”. 545 (1), s. 39–46, 2003. DOI: 10.1016/S0014-5793(03)00391-0. PMID: 12788490.
Calhoun M, Thomas J, Gennis R. The cytochrome oxidase superfamily of redox-driven proton pumps. „Trends Biochem Sci”. 19 (8), s. 325–330, 1994. DOI: 10.1016/0968-0004(94)90071-X. PMID: 7940677.
Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S. TThe whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. „Science”. 272 (5265), s. 1136–1144, 1996. DOI: 10.1126/science.272.5265.1136. PMID: 8638158.
Yoshikawa S, Muramoto K, Shinzawa-Itoh K, et al. Proton pumping mechanism of bovine heart cytochrome c oxidase. „Biochim. Biophys. Acta”. 1757 (9–10), s. 1110–1116, 2006. DOI: 10.1016/j.bbabio.2006.06.004. PMID: 16904626.
McDonald A, Vanlerberghe G. Branched mitochondrial electron transport in the Animalia: presence of alternative oxidase in several animal phyla. „IUBMB Life”. 56 (6), s. 333–341, 2004. DOI: 10.1080/1521-6540400000876. PMID: 15370881.
Sluse FE, Jarmuszkiewicz W. Alternative oxidase in the branched mitochondrial respiratory network: an overview on structure, function, regulation, and role. „Braz. J. Med. Biol. Res.”. 31 (6), s. 733–747, 1998. DOI: 10.1590/S0100-879X1998000600003. PMID: 9698817.
Moore AL, Siedow JN. The regulation and nature of the cyanide-resistant alternative oxidase of plant mitochondria. „Biochim. Biophys. Acta”. 1059 (2), s. 121–140, 1991. DOI: 10.1016/S0005-2728(05)80197-5. PMID: 1883834.
Vanlerberghe GC, McIntosh L. Alternative oxidase: From Gene to Function. „Annual Review of Plant Physiology and Plant Molecular Biology”. 48, s. 703–734, 1997. DOI: 10.1146/annurev.arplant.48.1.703. PMID: 15012279.
Ito Y, Saisho D, Nakazono M, Tsutsumi N, Hirai A. Transcript levels of tandem-arranged alternative oxidase genes in rice are increased by low temperature. „Gene”. 203 (2), s. 121–129, 1997. DOI: 10.1016/S0378-1119(97)00502-7. PMID: 9426242.
Heinemeyer J, Braun HP, Boekema EJ, Kouril R. A structural model of the cytochrome C reductase/oxidase supercomplex from yeast mitochondria. „J. Biol. Chem.”. 282 (16), s. 12240–12248, 2007. DOI: 10.1074/jbc.M610545200. PMID: 17322303.
Nealson KH. Post-Viking microbiology: new approaches, new data, new insights. „Origins of life and evolution of the biosphere: the journal of the International Society for the Study of the Origin of Life”. 29 (1), s. 73–93, 1999. DOI: 10.1023/A:1006515817767. PMID: 11536899.
Ingledew WJ, Poole RK. The respiratory chains of Escherichia coli. „Microbiol. Rev.”. 48 (3), s. 222–271, 1984. PMID: 6387427.
Unden G, Bongaerts J. Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. „Biochim. Biophys. Acta”. 1320 (3), s. 217–234, 1997. DOI: 10.1016/S0005-2728(97)00034-0. PMID: 9230919.
Cecchini G, Schröder I, Gunsalus RP, Maklashina E. Succinate dehydrogenase and fumarate reductase from Escherichia coli. „Biochim. Biophys. Acta”. 1553 (1–2), s. 140–157, 2002. DOI: 10.1016/S0005-2728(01)00238-9. PMID: 11803023.
Van Walraven HS, Strotmann H, Schwarz O, Rumberg B. The H+/ATP coupling ratio of the ATP synthase from thiol-modulated chloroplasts and two cyanobacterial strains is four. „FEBS Lett.”. 379 (3), s. 309–313, 1996. DOI: 10.1016/0014-5793(95)01536-1. PMID: 8603713.
Yoshida M, Muneyuki E, Hisabori T. ATP synthase–a marvellous rotary engine of the cell. „Nat. Rev. Mol. Cell Biol.”. 2 (9), s. 669–677, 2001. DOI: 10.1038/35089509. PMID: 11533724.
Capaldi R, Aggeler R. Mechanism of the F(1)F(0)-type ATP synthase, a biological rotary motor. „Trends Biochem Sci”. 27 (3), s. 154–160, 2002. DOI: 10.1016/S0968-0004(01)02051-5. PMID: 11893513.
Müller V. An exceptional variability in the motor of archaeal A1A0 ATPases: from multimeric to monomeric rotors comprising 6–13 ion binding sites. „J. Bioenerg. Biomembr.”. 36 (1), s. 115–125, 2004. DOI: 10.1023/B:JOBB.0000019603.68282.04. PMID: 15168615.
Davies K. Oxidative stress: the paradox of aerobic life. „Biochem Soc Symp”. 61, s. 1–31, 1995. PMID: 8660387.
Rattan SI. Theories of biological aging: genes, proteins, and free radicals. „Free Radic. Res.”. 40 (12), s. 1230–1238, 2006. DOI: 10.1080/10715760600911303. PMID: 17090411.
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. „Int. J. Biochem. Cell Biol.”. 39 (1), s. 44–84, 2007. DOI: 10.1016/j.biocel.2006.07.001. PMID: 16978905.
Raha S, Robinson B. Mitochondria, oxygen free radicals, disease and ageing. „Trends Biochem Sci”. 25 (10), s. 502–508, 2000. DOI: 10.1016/S0968-0004(00)01674-1. PMID: 11050436.
Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. „Nature”, s. 239–247, 2000. DOI: 10.1038/35041687. PMID: 11089981.
Joshi S, Huang YG. ATP synthase complex from bovine heart mitochondria: the oligomycin sensitivity conferring protein is essential for dicyclohexyl carbodiimide-sensitive ATPase. „Biochim. Biophys. Acta”. 1067 (2), s. 255–258, 1991. DOI: 10.1016/0005-2736(91)90051-9. PMID: 1831660.
Tsubaki M. Fourier-transform infrared study of cyanide binding to the Fea3-CuB binuclear site of bovine heart cytochrome c oxidase: implication of the redox-linked conformational change at the binuclear site. „Biochemistry”. 32 (1), s. 164–173, 1993. DOI: 10.1021/bi00052a022. PMID: 8380331.
Dervartanian DV, Veeger C. Studies on succinate dehydrogenase. I. Spectral properties of the purified enzyme and formation of enzyme-competitive inhibitor complexes. „Biochim. Biophys. Acta”. 92, s. 233–247, November 1964. PMID: 14249115.
Borecký J, Vercesi AE. Plant uncoupling mitochondrial protein and alternative oxidase: energy metabolism and stress. „Biosci. Rep.”. 25 (3–4), s. 271–286, 2005. DOI: 10.1007/s10540-005-2889-2. PMID: 16283557.
Kalckar HM. Origins of the concept oxidative phosphorylation. „Mol. Cell. Biochem.”. 5 (1–2), s. 55–63, 1974. DOI: 10.1007/BF01874172. PMID: 4279328.
Mitchell P. Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic type of Mechanism. „Nature”. 191 (4784), s. 144, 1961. DOI: 10.1038/191144a0. PMID: 13771349.