A.H.A.H.RomanoA.H.A.H., T.T.ConwayT.T., Evolution of carbohydrate metabolic pathways, „Research in Microbiology”, 147 (6-7), 1996, s. 448–455, DOI: 10.1016/0923-2508(96)83998-2, PMID: 9084754 [dostęp 2021-03-26](ang.).
Ron S.R.S.RonimusRon S.R.S., Hugh W.H.W.MorganHugh W.H.W., Distribution and phylogenies of enzymes of the Embden-Meyerhof-Parnas pathway from archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism, „Archaea”, 1 (3), 2003, s. 199–221, DOI: 10.1155/2003/162593, PMID: 15803666, PMCID: PMC2685568 [dostęp 2021-03-26](ang.).
JesúsJ.Muñoz-BertomeuJesúsJ. i inni, A critical role of plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase in the control of plant metabolism and development, „Plant Signaling & Behavior”, 5 (1), 2010, s. 67–69, DOI: 10.4161/psb.5.1.10200, PMID: 20592814, PMCID: PMC2835963 [dostęp 2021-03-26](ang.).
Vasilios M.E.V.M.E.AndriotisVasilios M.E.V.M.E. i inni, Plastidial glycolysis in developing Arabidopsis embryos, „The New Phytologist”, 185 (3), 2010, s. 649–662, DOI: 10.1111/j.1469-8137.2009.03113.x, PMID: 20002588 [dostęp 2021-03-26](ang.).
Wanderley deW.SouzaWanderley deW., Special organelles of some pathogenic protozoa, „Parasitology Research”, 88 (12), 2002, s. 1013–1025, DOI: 10.1007/s00436-002-0696-2, PMID: 12444449 [dostęp 2021-03-26](ang.).
MarilynM.ParsonsMarilynM., Glycosomes: parasites and the divergence of peroxisomal purpose, „Molecular Microbiology”, 53 (3), 2004, s. 717–724, DOI: 10.1111/j.1365-2958.2004.04203.x, PMID: 15255886 [dostęp 2021-03-26](ang.).
J. MaxwellJ.M.SilvermanJ. MaxwellJ.M. i inni, Proteomic analysis of the secretome of Leishmania donovani, „Genome Biology”, 9 (2), 2008, R35, DOI: 10.1186/gb-2008-9-2-r35, PMID: 18282296, PMCID: PMC2374696 [dostęp 2021-03-26](ang.).
M.M.ParsonsM.M. i inni, Biogenesis and function of peroxisomes and glycosomes, „Molecular and Biochemical Parasitology”, 115 (1), 2001, s. 19–28, DOI: 10.1016/s0166-6851(01)00261-4, PMID: 11377736 [dostęp 2021-03-26](ang.).
F.R.F.R.OpperdoesF.R.F.R., Compartmentation of carbohydrate metabolism in trypanosomes, „Annual Review of Microbiology”, 41, 1987, s. 127–151, DOI: 10.1146/annurev.mi.41.100187.001015, PMID: 3120638 [dostęp 2021-03-26](ang.).
E. BartholomeusE.B.KuettnerE. BartholomeusE.B. i inni, Crystal structure of hexokinase KlHxk1 of Kluyveromyces lactis: a molecular basis for understanding the control of yeast hexokinase functions via covalent modification and oligomerization, „Journal of Biological Chemistry”, 285 (52), 2010, s. 41019–41033, DOI: 10.1074/jbc.M110.185850, PMID: 20943665, PMCID: PMC3003401 [dostęp 2021-03-26](ang.).
C.J.C.J.JefferyC.J.C.J. i inni, Crystal structure of rabbit phosphoglucose isomerase, a glycolytic enzyme that moonlights as neuroleukin, autocrine motility factor, and differentiation mediator, „Biochemistry”, 39 (5), 2000, s. 955–964, DOI: 10.1021/bi991604m, PMID: 10653639 [dostęp 2021-03-26](ang.).
B.B.SiebersB.B. i inni, Archaeal fructose-1,6-bisphosphate aldolases constitute a new family of archaeal type class I aldolase, „Journal of Biological Chemistry”, 276 (31), 2001, s. 28710–28718, DOI: 10.1074/jbc.M103447200, PMID: 11387336 [dostęp 2021-03-26](ang.).
E.E.LorentzenE.E. i inni, Structure, function and evolution of the Archaeal class I fructose-1,6-bisphosphate aldolase, „Biochemical Society Transactions”, 32 (Pt 2), 2004, s. 259–263, DOI: 10.1042/bst0320259, PMID: 15046584 [dostęp 2021-03-26](ang.).
Nicola J.N.J.PatronNicola J.N.J., Matthew B.M.B.RogersMatthew B.M.B., Patrick J.P.J.KeelingPatrick J.P.J., Gene replacement of fructose-1,6-bisphosphate aldolase supports the hypothesis of a single photosynthetic ancestor of chromalveolates, „Eukaryotic Cell”, 3 (5), 2004, s. 1169–1175, DOI: 10.1128/EC.3.5.1169-1175.2004, PMID: 15470245, PMCID: PMC522617 [dostęp 2021-03-26](ang.).
S.M.S.M.ZgibyS.M.S.M. i inni, Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases, „European Journal of Biochemistry”, 267 (6), 2000, s. 1858–1868, DOI: 10.1046/j.1432-1327.2000.01191.x, PMID: 10712619 [dostęp 2021-03-26](ang.).
G.G.AuerbachG.G. i inni, Closed structure of phosphoglycerate kinase from Thermotoga maritima reveals the catalytic mechanism and determinants of thermal stability, „Structure”, 5 (11), 1997, s. 1475–1483, DOI: 10.1016/s0969-2126(97)00297-9, PMID: 9384563 [dostęp 2021-03-26](ang.).
A.N.A.N.SzilágyiA.N.A.N. i inni, A 1.8 A resolution structure of pig muscle 3-phosphoglycerate kinase with bound MgADP and 3-phosphoglycerate in open conformation: new insight into the role of the nucleotide in domain closure, „Journal of Molecular Biology”, 306 (3), 2001, s. 499–511, DOI: 10.1006/jmbi.2000.4294, PMID: 11178909 [dostęp 2021-03-26](ang.).
R.D.R.D.BanksR.D.R.D. i inni, Sequence, structure and activity of phosphoglycerate kinase: a possible hinge-bending enzyme, „Nature”, 279 (5716), 1979, s. 773–777, DOI: 10.1038/279773a0, PMID: 450128 [dostęp 2021-03-26](ang.).
B.E.B.E.BernsteinB.E.B.E., W.G.W.G.HolW.G.W.G., Crystal structures of substrates and products bound to the phosphoglycerate kinase active site reveal the catalytic mechanism, „Biochemistry”, 37 (13), 1998, s. 4429–4436, DOI: 10.1021/bi9724117, PMID: 9521762 [dostęp 2021-03-26](ang.).
S.S.KumarS.S. i inni, Folding funnels and conformational transitions via hinge-bending motions, „Cell Biochemistry and Biophysics”, 31 (2), 1999, s. 141–164, DOI: 10.1007/BF02738169, PMID: 10593256 [dostęp 2021-03-26](ang.).
E.E.ZhangE.E. i inni, Mechanism of enolase: the crystal structure of asymmetric dimer enolase-2-phospho-D-glycerate/enolase-phosphoenolpyruvate at 2.0 Å resolution, „Biochemistry”, 36 (41), 1997, s. 12526–12534, DOI: 10.1021/bi9712450, PMID: 9376357 [dostęp 2021-03-26](ang.).
V.V.PancholiV.V., Multifunctional α-enolase: its role in diseases, „Cellular and Molecular Life Sciences”, 58 (7), 2001, s. 902–920, DOI: 10.1007/pl00000910, PMID: 11497239 [dostęp 2021-03-26](ang.).
M.M.PeshavariaM.M., I.N.I.N.DayI.N.I.N., Molecular structure of the human muscle-specific enolase gene (ENO3), „The Biochemical Journal”, 275 ( Pt 2), 1991, s. 427–433, DOI: 10.1042/bj2750427, PMID: 1840492, PMCID: PMC1150071 [dostęp 2021-03-26](ang.).
R.K.J.R.K.J.HoornR.K.J.R.K.J., J.P.J.P.FlikweertJ.P.J.P., G.E.J.G.E.J.StaalG.E.J.G.E.J., Purification and properties of enolase of human erythrocytes, „International Journal of Biochemistry”, 5 (11-12), 1974, s. 845–852, DOI: 10.1016/0020-711X(74)90119-0 [dostęp 2021-03-26](ang.).
T.M.T.M.LarsenT.M.T.M. i inni, A carboxylate oxygen of the substrate bridges the magnesium ions at the active site of enolase: structure of the yeast enzyme complexed with the equilibrium mixture of 2-phosphoglycerate and phosphoenolpyruvate at 1.8 Å resolution, „Biochemistry”, 35 (14), 1996, s. 4349–4358, DOI: 10.1021/bi952859c, PMID: 8605183 [dostęp 2021-03-26](ang.).
J.E.J.E.WedekindJ.E.J.E., G.H.G.H.ReedG.H.G.H., I.I.RaymentI.I., Octahedral coordination at the high-affinity metal site in enolase: crystallographic analysis of the MgII–enzyme complex from yeast at 1.9 Å resolution, „Biochemistry”, 34 (13), 1995, s. 4325–4330, DOI: 10.1021/bi00013a022, PMID: 7703246 [dostęp 2021-03-26](ang.).
J.E.J.E.WedekindJ.E.J.E. i inni, Chelation of serine 39 to Mg2+ latches a gate at the active site of enolase: structure of the bis(Mg2+) complex of yeast enolase and the intermediate analog phosphonoacetohydroxamate at 2.1-Å resolution, „Biochemistry”, 33 (31), 1994, s. 9333–9342, DOI: 10.1021/bi00197a038, PMID: 8049235 [dostęp 2021-03-26](ang.).
F.J.F.J.HütherF.J.F.J., N.N.PsarrosN.N., H.H.DuschnerH.H., Isolation, characterization, and inhibition kinetics of enolase from Streptococcus rattus FA-1, „Infection and Immunity”, 58 (4), 1990, s. 1043–1047, DOI: 10.1128/IAI.58.4.1043-1047.1990, PMID: 2318530, PMCID: PMC258580 [dostęp 2021-03-26](ang.).
T.M.T.M.LarsenT.M.T.M. i inni, Structure of rabbit muscle pyruvate kinase complexed with Mn2+, K+, and pyruvate, „Biochemistry”, 33 (20), 1994, s. 6301–6309, DOI: 10.1021/bi00186a033, PMID: 8193145 [dostęp 2021-03-26](ang.).
G.G.ValentiniG.G. i inni, The allosteric regulation of pyruvate kinase, „Journal of Biological Chemistry”, 275 (24), 2000, s. 18145–18152, DOI: 10.1074/jbc.M001870200, PMID: 10751408 [dostęp 2021-03-26](ang.).
M.M.SeligM.M. i inni, Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga, „Archives of Microbiology”, 167 (4), 1997, s. 217–232, DOI: 10.1007/BF03356097, PMID: 9075622 [dostęp 2021-03-26](ang.).
E.E.Meléndez-HeviaE.E. i inni, Theoretical approaches to the evolutionary optimization of glycolysis--chemical analysis, „European Journal of Biochemistry”, 244 (2), 1997, s. 527–543, DOI: 10.1111/j.1432-1033.1997.t01-1-00527.x, PMID: 9119021 [dostęp 2021-03-26](ang.).
nih.gov
ncbi.nlm.nih.gov
A.H.A.H.RomanoA.H.A.H., T.T.ConwayT.T., Evolution of carbohydrate metabolic pathways, „Research in Microbiology”, 147 (6-7), 1996, s. 448–455, DOI: 10.1016/0923-2508(96)83998-2, PMID: 9084754 [dostęp 2021-03-26](ang.).
Ron S.R.S.RonimusRon S.R.S., Hugh W.H.W.MorganHugh W.H.W., Distribution and phylogenies of enzymes of the Embden-Meyerhof-Parnas pathway from archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism, „Archaea”, 1 (3), 2003, s. 199–221, DOI: 10.1155/2003/162593, PMID: 15803666, PMCID: PMC2685568 [dostęp 2021-03-26](ang.).
JesúsJ.Muñoz-BertomeuJesúsJ. i inni, A critical role of plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase in the control of plant metabolism and development, „Plant Signaling & Behavior”, 5 (1), 2010, s. 67–69, DOI: 10.4161/psb.5.1.10200, PMID: 20592814, PMCID: PMC2835963 [dostęp 2021-03-26](ang.).
Vasilios M.E.V.M.E.AndriotisVasilios M.E.V.M.E. i inni, Plastidial glycolysis in developing Arabidopsis embryos, „The New Phytologist”, 185 (3), 2010, s. 649–662, DOI: 10.1111/j.1469-8137.2009.03113.x, PMID: 20002588 [dostęp 2021-03-26](ang.).
Wanderley deW.SouzaWanderley deW., Special organelles of some pathogenic protozoa, „Parasitology Research”, 88 (12), 2002, s. 1013–1025, DOI: 10.1007/s00436-002-0696-2, PMID: 12444449 [dostęp 2021-03-26](ang.).
MarilynM.ParsonsMarilynM., Glycosomes: parasites and the divergence of peroxisomal purpose, „Molecular Microbiology”, 53 (3), 2004, s. 717–724, DOI: 10.1111/j.1365-2958.2004.04203.x, PMID: 15255886 [dostęp 2021-03-26](ang.).
J. MaxwellJ.M.SilvermanJ. MaxwellJ.M. i inni, Proteomic analysis of the secretome of Leishmania donovani, „Genome Biology”, 9 (2), 2008, R35, DOI: 10.1186/gb-2008-9-2-r35, PMID: 18282296, PMCID: PMC2374696 [dostęp 2021-03-26](ang.).
M.M.ParsonsM.M. i inni, Biogenesis and function of peroxisomes and glycosomes, „Molecular and Biochemical Parasitology”, 115 (1), 2001, s. 19–28, DOI: 10.1016/s0166-6851(01)00261-4, PMID: 11377736 [dostęp 2021-03-26](ang.).
F.R.F.R.OpperdoesF.R.F.R., Compartmentation of carbohydrate metabolism in trypanosomes, „Annual Review of Microbiology”, 41, 1987, s. 127–151, DOI: 10.1146/annurev.mi.41.100187.001015, PMID: 3120638 [dostęp 2021-03-26](ang.).
E. BartholomeusE.B.KuettnerE. BartholomeusE.B. i inni, Crystal structure of hexokinase KlHxk1 of Kluyveromyces lactis: a molecular basis for understanding the control of yeast hexokinase functions via covalent modification and oligomerization, „Journal of Biological Chemistry”, 285 (52), 2010, s. 41019–41033, DOI: 10.1074/jbc.M110.185850, PMID: 20943665, PMCID: PMC3003401 [dostęp 2021-03-26](ang.).
C.J.C.J.JefferyC.J.C.J. i inni, Crystal structure of rabbit phosphoglucose isomerase, a glycolytic enzyme that moonlights as neuroleukin, autocrine motility factor, and differentiation mediator, „Biochemistry”, 39 (5), 2000, s. 955–964, DOI: 10.1021/bi991604m, PMID: 10653639 [dostęp 2021-03-26](ang.).
B.B.SiebersB.B. i inni, Archaeal fructose-1,6-bisphosphate aldolases constitute a new family of archaeal type class I aldolase, „Journal of Biological Chemistry”, 276 (31), 2001, s. 28710–28718, DOI: 10.1074/jbc.M103447200, PMID: 11387336 [dostęp 2021-03-26](ang.).
E.E.LorentzenE.E. i inni, Structure, function and evolution of the Archaeal class I fructose-1,6-bisphosphate aldolase, „Biochemical Society Transactions”, 32 (Pt 2), 2004, s. 259–263, DOI: 10.1042/bst0320259, PMID: 15046584 [dostęp 2021-03-26](ang.).
Nicola J.N.J.PatronNicola J.N.J., Matthew B.M.B.RogersMatthew B.M.B., Patrick J.P.J.KeelingPatrick J.P.J., Gene replacement of fructose-1,6-bisphosphate aldolase supports the hypothesis of a single photosynthetic ancestor of chromalveolates, „Eukaryotic Cell”, 3 (5), 2004, s. 1169–1175, DOI: 10.1128/EC.3.5.1169-1175.2004, PMID: 15470245, PMCID: PMC522617 [dostęp 2021-03-26](ang.).
S.M.S.M.ZgibyS.M.S.M. i inni, Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases, „European Journal of Biochemistry”, 267 (6), 2000, s. 1858–1868, DOI: 10.1046/j.1432-1327.2000.01191.x, PMID: 10712619 [dostęp 2021-03-26](ang.).
H.C.H.C.WatsonH.C.H.C. i inni, Sequence and structure of yeast phosphoglycerate kinase, „The EMBO Journal”, 1 (12), 1982, s. 1635–1640, PMID: 6765200, PMCID: PMC553262 [dostęp 2021-03-26](ang.).
G.G.AuerbachG.G. i inni, Closed structure of phosphoglycerate kinase from Thermotoga maritima reveals the catalytic mechanism and determinants of thermal stability, „Structure”, 5 (11), 1997, s. 1475–1483, DOI: 10.1016/s0969-2126(97)00297-9, PMID: 9384563 [dostęp 2021-03-26](ang.).
A.N.A.N.SzilágyiA.N.A.N. i inni, A 1.8 A resolution structure of pig muscle 3-phosphoglycerate kinase with bound MgADP and 3-phosphoglycerate in open conformation: new insight into the role of the nucleotide in domain closure, „Journal of Molecular Biology”, 306 (3), 2001, s. 499–511, DOI: 10.1006/jmbi.2000.4294, PMID: 11178909 [dostęp 2021-03-26](ang.).
R.D.R.D.BanksR.D.R.D. i inni, Sequence, structure and activity of phosphoglycerate kinase: a possible hinge-bending enzyme, „Nature”, 279 (5716), 1979, s. 773–777, DOI: 10.1038/279773a0, PMID: 450128 [dostęp 2021-03-26](ang.).
B.E.B.E.BernsteinB.E.B.E., W.G.W.G.HolW.G.W.G., Crystal structures of substrates and products bound to the phosphoglycerate kinase active site reveal the catalytic mechanism, „Biochemistry”, 37 (13), 1998, s. 4429–4436, DOI: 10.1021/bi9724117, PMID: 9521762 [dostęp 2021-03-26](ang.).
S.S.KumarS.S. i inni, Folding funnels and conformational transitions via hinge-bending motions, „Cell Biochemistry and Biophysics”, 31 (2), 1999, s. 141–164, DOI: 10.1007/BF02738169, PMID: 10593256 [dostęp 2021-03-26](ang.).
E.E.ZhangE.E. i inni, Mechanism of enolase: the crystal structure of asymmetric dimer enolase-2-phospho-D-glycerate/enolase-phosphoenolpyruvate at 2.0 Å resolution, „Biochemistry”, 36 (41), 1997, s. 12526–12534, DOI: 10.1021/bi9712450, PMID: 9376357 [dostęp 2021-03-26](ang.).
V.V.PancholiV.V., Multifunctional α-enolase: its role in diseases, „Cellular and Molecular Life Sciences”, 58 (7), 2001, s. 902–920, DOI: 10.1007/pl00000910, PMID: 11497239 [dostęp 2021-03-26](ang.).
M.M.PeshavariaM.M., I.N.I.N.DayI.N.I.N., Molecular structure of the human muscle-specific enolase gene (ENO3), „The Biochemical Journal”, 275 ( Pt 2), 1991, s. 427–433, DOI: 10.1042/bj2750427, PMID: 1840492, PMCID: PMC1150071 [dostęp 2021-03-26](ang.).
T.M.T.M.LarsenT.M.T.M. i inni, A carboxylate oxygen of the substrate bridges the magnesium ions at the active site of enolase: structure of the yeast enzyme complexed with the equilibrium mixture of 2-phosphoglycerate and phosphoenolpyruvate at 1.8 Å resolution, „Biochemistry”, 35 (14), 1996, s. 4349–4358, DOI: 10.1021/bi952859c, PMID: 8605183 [dostęp 2021-03-26](ang.).
J.E.J.E.WedekindJ.E.J.E., G.H.G.H.ReedG.H.G.H., I.I.RaymentI.I., Octahedral coordination at the high-affinity metal site in enolase: crystallographic analysis of the MgII–enzyme complex from yeast at 1.9 Å resolution, „Biochemistry”, 34 (13), 1995, s. 4325–4330, DOI: 10.1021/bi00013a022, PMID: 7703246 [dostęp 2021-03-26](ang.).
J.E.J.E.WedekindJ.E.J.E. i inni, Chelation of serine 39 to Mg2+ latches a gate at the active site of enolase: structure of the bis(Mg2+) complex of yeast enolase and the intermediate analog phosphonoacetohydroxamate at 2.1-Å resolution, „Biochemistry”, 33 (31), 1994, s. 9333–9342, DOI: 10.1021/bi00197a038, PMID: 8049235 [dostęp 2021-03-26](ang.).
F.J.F.J.HütherF.J.F.J., N.N.PsarrosN.N., H.H.DuschnerH.H., Isolation, characterization, and inhibition kinetics of enolase from Streptococcus rattus FA-1, „Infection and Immunity”, 58 (4), 1990, s. 1043–1047, DOI: 10.1128/IAI.58.4.1043-1047.1990, PMID: 2318530, PMCID: PMC258580 [dostęp 2021-03-26](ang.).
T.M.T.M.LarsenT.M.T.M. i inni, Structure of rabbit muscle pyruvate kinase complexed with Mn2+, K+, and pyruvate, „Biochemistry”, 33 (20), 1994, s. 6301–6309, DOI: 10.1021/bi00186a033, PMID: 8193145 [dostęp 2021-03-26](ang.).
G.G.ValentiniG.G. i inni, The allosteric regulation of pyruvate kinase, „Journal of Biological Chemistry”, 275 (24), 2000, s. 18145–18152, DOI: 10.1074/jbc.M001870200, PMID: 10751408 [dostęp 2021-03-26](ang.).
T.T.DandekarT.T. i inni, Pathway alignment: application to the comparative analysis of glycolytic enzymes, „The Biochemical Journal”, 343 Pt 1, 1999, s. 115–124, PMID: 10493919, PMCID: PMC1220531 [dostęp 2021-03-26](ang.).
M.M.SeligM.M. i inni, Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga, „Archives of Microbiology”, 167 (4), 1997, s. 217–232, DOI: 10.1007/BF03356097, PMID: 9075622 [dostęp 2021-03-26](ang.).
E.E.Meléndez-HeviaE.E. i inni, Theoretical approaches to the evolutionary optimization of glycolysis--chemical analysis, „European Journal of Biochemistry”, 244 (2), 1997, s. 527–543, DOI: 10.1111/j.1432-1033.1997.t01-1-00527.x, PMID: 9119021 [dostęp 2021-03-26](ang.).
worldcat.org
Hans GünterH.G.SchlegelHans GünterH.G., Mikrobiologia ogólna, ZdzisławZ.Markiewicz (red.), wyd. 2 popr., Warszawa: Wydawnictwo Naukowe PWN, 2004, s. 295–296, ISBN 83-01-13999-4, OCLC749371403.