Glikoliza (Polish Wikipedia)

Analysis of information sources in references of the Wikipedia article "Glikoliza" in Polish language version.

refsWebsite
Global rank Polish rank
4th place
7th place
2nd place
6th place
5th place
2nd place

doi.org

dx.doi.org

  • A.H. Romano, T. Conway, Evolution of carbohydrate metabolic pathways, „Research in Microbiology”, 147 (6-7), 1996, s. 448–455, DOI10.1016/0923-2508(96)83998-2, PMID9084754 [dostęp 2021-03-26] (ang.).
  • Ron S. Ronimus, Hugh W. Morgan, Distribution and phylogenies of enzymes of the Embden-Meyerhof-Parnas pathway from archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism, „Archaea”, 1 (3), 2003, s. 199–221, DOI10.1155/2003/162593, PMID15803666, PMCIDPMC2685568 [dostęp 2021-03-26] (ang.).
  • Jesús Muñoz-Bertomeu i inni, A critical role of plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase in the control of plant metabolism and development, „Plant Signaling & Behavior”, 5 (1), 2010, s. 67–69, DOI10.4161/psb.5.1.10200, PMID20592814, PMCIDPMC2835963 [dostęp 2021-03-26] (ang.).
  • Vasilios M.E. Andriotis i inni, Plastidial glycolysis in developing Arabidopsis embryos, „The New Phytologist”, 185 (3), 2010, s. 649–662, DOI10.1111/j.1469-8137.2009.03113.x, PMID20002588 [dostęp 2021-03-26] (ang.).
  • Wanderley de Souza, Special organelles of some pathogenic protozoa, „Parasitology Research”, 88 (12), 2002, s. 1013–1025, DOI10.1007/s00436-002-0696-2, PMID12444449 [dostęp 2021-03-26] (ang.).
  • Jurgen R. Haanstra i inni, Compartmentation prevents a lethal turbo-explosion of glycolysis in trypanosomes, „Proceedings of the National Academy of Sciences of the United States of America”, 105 (46), 2008, s. 17718–17723, DOI10.1073/pnas.0806664105, PMID19008351, PMCIDPMC2584722 [dostęp 2021-03-26] (ang.).
  • Marilyn Parsons, Glycosomes: parasites and the divergence of peroxisomal purpose, „Molecular Microbiology”, 53 (3), 2004, s. 717–724, DOI10.1111/j.1365-2958.2004.04203.x, PMID15255886 [dostęp 2021-03-26] (ang.).
  • J. Maxwell Silverman i inni, Proteomic analysis of the secretome of Leishmania donovani, „Genome Biology”, 9 (2), 2008, R35, DOI10.1186/gb-2008-9-2-r35, PMID18282296, PMCIDPMC2374696 [dostęp 2021-03-26] (ang.).
  • M. Parsons i inni, Biogenesis and function of peroxisomes and glycosomes, „Molecular and Biochemical Parasitology”, 115 (1), 2001, s. 19–28, DOI10.1016/s0166-6851(01)00261-4, PMID11377736 [dostęp 2021-03-26] (ang.).
  • F.R. Opperdoes, Compartmentation of carbohydrate metabolism in trypanosomes, „Annual Review of Microbiology”, 41, 1987, s. 127–151, DOI10.1146/annurev.mi.41.100187.001015, PMID3120638 [dostęp 2021-03-26] (ang.).
  • E. Bartholomeus Kuettner i inni, Crystal structure of hexokinase KlHxk1 of Kluyveromyces lactis: a molecular basis for understanding the control of yeast hexokinase functions via covalent modification and oligomerization, „Journal of Biological Chemistry”, 285 (52), 2010, s. 41019–41033, DOI10.1074/jbc.M110.185850, PMID20943665, PMCIDPMC3003401 [dostęp 2021-03-26] (ang.).
  • C.J. Jeffery i inni, Crystal structure of rabbit phosphoglucose isomerase, a glycolytic enzyme that moonlights as neuroleukin, autocrine motility factor, and differentiation mediator, „Biochemistry”, 39 (5), 2000, s. 955–964, DOI10.1021/bi991604m, PMID10653639 [dostęp 2021-03-26] (ang.).
  • B. Siebers i inni, Archaeal fructose-1,6-bisphosphate aldolases constitute a new family of archaeal type class I aldolase, „Journal of Biological Chemistry”, 276 (31), 2001, s. 28710–28718, DOI10.1074/jbc.M103447200, PMID11387336 [dostęp 2021-03-26] (ang.).
  • E. Lorentzen i inni, Structure, function and evolution of the Archaeal class I fructose-1,6-bisphosphate aldolase, „Biochemical Society Transactions”, 32 (Pt 2), 2004, s. 259–263, DOI10.1042/bst0320259, PMID15046584 [dostęp 2021-03-26] (ang.).
  • Nicola J. Patron, Matthew B. Rogers, Patrick J. Keeling, Gene replacement of fructose-1,6-bisphosphate aldolase supports the hypothesis of a single photosynthetic ancestor of chromalveolates, „Eukaryotic Cell”, 3 (5), 2004, s. 1169–1175, DOI10.1128/EC.3.5.1169-1175.2004, PMID15470245, PMCIDPMC522617 [dostęp 2021-03-26] (ang.).
  • S.M. Zgiby i inni, Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases, „European Journal of Biochemistry”, 267 (6), 2000, s. 1858–1868, DOI10.1046/j.1432-1327.2000.01191.x, PMID10712619 [dostęp 2021-03-26] (ang.).
  • G. Auerbach i inni, Closed structure of phosphoglycerate kinase from Thermotoga maritima reveals the catalytic mechanism and determinants of thermal stability, „Structure”, 5 (11), 1997, s. 1475–1483, DOI10.1016/s0969-2126(97)00297-9, PMID9384563 [dostęp 2021-03-26] (ang.).
  • C.C. Blake, D.W. Rice, Phosphoglycerate kinase, „Philosophical Transactions of the Royal Society of London. Series B. Biological Sciences”, 293 (1063), 1981, s. 93–104, DOI10.1098/rstb.1981.0063, PMID6115427 [dostęp 2021-03-26] (ang.).
  • A.N. Szilágyi i inni, A 1.8 A resolution structure of pig muscle 3-phosphoglycerate kinase with bound MgADP and 3-phosphoglycerate in open conformation: new insight into the role of the nucleotide in domain closure, „Journal of Molecular Biology”, 306 (3), 2001, s. 499–511, DOI10.1006/jmbi.2000.4294, PMID11178909 [dostęp 2021-03-26] (ang.).
  • R.D. Banks i inni, Sequence, structure and activity of phosphoglycerate kinase: a possible hinge-bending enzyme, „Nature”, 279 (5716), 1979, s. 773–777, DOI10.1038/279773a0, PMID450128 [dostęp 2021-03-26] (ang.).
  • B.E. Bernstein, W.G. Hol, Crystal structures of substrates and products bound to the phosphoglycerate kinase active site reveal the catalytic mechanism, „Biochemistry”, 37 (13), 1998, s. 4429–4436, DOI10.1021/bi9724117, PMID9521762 [dostęp 2021-03-26] (ang.).
  • S. Kumar i inni, Folding funnels and conformational transitions via hinge-bending motions, „Cell Biochemistry and Biophysics”, 31 (2), 1999, s. 141–164, DOI10.1007/BF02738169, PMID10593256 [dostęp 2021-03-26] (ang.).
  • E. Zhang i inni, Mechanism of enolase: the crystal structure of asymmetric dimer enolase-2-phospho-D-glycerate/enolase-phosphoenolpyruvate at 2.0 Å resolution, „Biochemistry”, 36 (41), 1997, s. 12526–12534, DOI10.1021/bi9712450, PMID9376357 [dostęp 2021-03-26] (ang.).
  • V. Pancholi, Multifunctional α-enolase: its role in diseases, „Cellular and Molecular Life Sciences”, 58 (7), 2001, s. 902–920, DOI10.1007/pl00000910, PMID11497239 [dostęp 2021-03-26] (ang.).
  • M. Peshavaria, I.N. Day, Molecular structure of the human muscle-specific enolase gene (ENO3), „The Biochemical Journal”, 275 ( Pt 2), 1991, s. 427–433, DOI10.1042/bj2750427, PMID1840492, PMCIDPMC1150071 [dostęp 2021-03-26] (ang.).
  • R.K.J. Hoorn, J.P. Flikweert, G.E.J. Staal, Purification and properties of enolase of human erythrocytes, „International Journal of Biochemistry”, 5 (11-12), 1974, s. 845–852, DOI10.1016/0020-711X(74)90119-0 [dostęp 2021-03-26] (ang.).
  • T.M. Larsen i inni, A carboxylate oxygen of the substrate bridges the magnesium ions at the active site of enolase: structure of the yeast enzyme complexed with the equilibrium mixture of 2-phosphoglycerate and phosphoenolpyruvate at 1.8 Å resolution, „Biochemistry”, 35 (14), 1996, s. 4349–4358, DOI10.1021/bi952859c, PMID8605183 [dostęp 2021-03-26] (ang.).
  • J.E. Wedekind, G.H. Reed, I. Rayment, Octahedral coordination at the high-affinity metal site in enolase: crystallographic analysis of the MgII–enzyme complex from yeast at 1.9 Å resolution, „Biochemistry”, 34 (13), 1995, s. 4325–4330, DOI10.1021/bi00013a022, PMID7703246 [dostęp 2021-03-26] (ang.).
  • J.E. Wedekind i inni, Chelation of serine 39 to Mg2+ latches a gate at the active site of enolase: structure of the bis(Mg2+) complex of yeast enolase and the intermediate analog phosphonoacetohydroxamate at 2.1-Å resolution, „Biochemistry”, 33 (31), 1994, s. 9333–9342, DOI10.1021/bi00197a038, PMID8049235 [dostęp 2021-03-26] (ang.).
  • F.J. Hüther, N. Psarros, H. Duschner, Isolation, characterization, and inhibition kinetics of enolase from Streptococcus rattus FA-1, „Infection and Immunity”, 58 (4), 1990, s. 1043–1047, DOI10.1128/IAI.58.4.1043-1047.1990, PMID2318530, PMCIDPMC258580 [dostęp 2021-03-26] (ang.).
  • T.M. Larsen i inni, Structure of rabbit muscle pyruvate kinase complexed with Mn2+, K+, and pyruvate, „Biochemistry”, 33 (20), 1994, s. 6301–6309, DOI10.1021/bi00186a033, PMID8193145 [dostęp 2021-03-26] (ang.).
  • G. Valentini i inni, The allosteric regulation of pyruvate kinase, „Journal of Biological Chemistry”, 275 (24), 2000, s. 18145–18152, DOI10.1074/jbc.M001870200, PMID10751408 [dostęp 2021-03-26] (ang.).
  • William J. Cook i inni, Crystal structure of Cryptosporidium parvum pyruvate kinase, „PLoS One”, 7 (10), 2012, e46875, DOI10.1371/journal.pone.0046875, PMID23056503, PMCIDPMC3467265 [dostęp 2021-03-26] (ang.).
  • M. Selig i inni, Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga, „Archives of Microbiology”, 167 (4), 1997, s. 217–232, DOI10.1007/BF03356097, PMID9075622 [dostęp 2021-03-26] (ang.).
  • E. Meléndez-Hevia i inni, Theoretical approaches to the evolutionary optimization of glycolysis--chemical analysis, „European Journal of Biochemistry”, 244 (2), 1997, s. 527–543, DOI10.1111/j.1432-1033.1997.t01-1-00527.x, PMID9119021 [dostęp 2021-03-26] (ang.).

nih.gov

ncbi.nlm.nih.gov

  • A.H. Romano, T. Conway, Evolution of carbohydrate metabolic pathways, „Research in Microbiology”, 147 (6-7), 1996, s. 448–455, DOI10.1016/0923-2508(96)83998-2, PMID9084754 [dostęp 2021-03-26] (ang.).
  • Ron S. Ronimus, Hugh W. Morgan, Distribution and phylogenies of enzymes of the Embden-Meyerhof-Parnas pathway from archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism, „Archaea”, 1 (3), 2003, s. 199–221, DOI10.1155/2003/162593, PMID15803666, PMCIDPMC2685568 [dostęp 2021-03-26] (ang.).
  • Jesús Muñoz-Bertomeu i inni, A critical role of plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase in the control of plant metabolism and development, „Plant Signaling & Behavior”, 5 (1), 2010, s. 67–69, DOI10.4161/psb.5.1.10200, PMID20592814, PMCIDPMC2835963 [dostęp 2021-03-26] (ang.).
  • Vasilios M.E. Andriotis i inni, Plastidial glycolysis in developing Arabidopsis embryos, „The New Phytologist”, 185 (3), 2010, s. 649–662, DOI10.1111/j.1469-8137.2009.03113.x, PMID20002588 [dostęp 2021-03-26] (ang.).
  • Wanderley de Souza, Special organelles of some pathogenic protozoa, „Parasitology Research”, 88 (12), 2002, s. 1013–1025, DOI10.1007/s00436-002-0696-2, PMID12444449 [dostęp 2021-03-26] (ang.).
  • Jurgen R. Haanstra i inni, Compartmentation prevents a lethal turbo-explosion of glycolysis in trypanosomes, „Proceedings of the National Academy of Sciences of the United States of America”, 105 (46), 2008, s. 17718–17723, DOI10.1073/pnas.0806664105, PMID19008351, PMCIDPMC2584722 [dostęp 2021-03-26] (ang.).
  • Marilyn Parsons, Glycosomes: parasites and the divergence of peroxisomal purpose, „Molecular Microbiology”, 53 (3), 2004, s. 717–724, DOI10.1111/j.1365-2958.2004.04203.x, PMID15255886 [dostęp 2021-03-26] (ang.).
  • J. Maxwell Silverman i inni, Proteomic analysis of the secretome of Leishmania donovani, „Genome Biology”, 9 (2), 2008, R35, DOI10.1186/gb-2008-9-2-r35, PMID18282296, PMCIDPMC2374696 [dostęp 2021-03-26] (ang.).
  • M. Parsons i inni, Biogenesis and function of peroxisomes and glycosomes, „Molecular and Biochemical Parasitology”, 115 (1), 2001, s. 19–28, DOI10.1016/s0166-6851(01)00261-4, PMID11377736 [dostęp 2021-03-26] (ang.).
  • F.R. Opperdoes, Compartmentation of carbohydrate metabolism in trypanosomes, „Annual Review of Microbiology”, 41, 1987, s. 127–151, DOI10.1146/annurev.mi.41.100187.001015, PMID3120638 [dostęp 2021-03-26] (ang.).
  • E. Bartholomeus Kuettner i inni, Crystal structure of hexokinase KlHxk1 of Kluyveromyces lactis: a molecular basis for understanding the control of yeast hexokinase functions via covalent modification and oligomerization, „Journal of Biological Chemistry”, 285 (52), 2010, s. 41019–41033, DOI10.1074/jbc.M110.185850, PMID20943665, PMCIDPMC3003401 [dostęp 2021-03-26] (ang.).
  • C.J. Jeffery i inni, Crystal structure of rabbit phosphoglucose isomerase, a glycolytic enzyme that moonlights as neuroleukin, autocrine motility factor, and differentiation mediator, „Biochemistry”, 39 (5), 2000, s. 955–964, DOI10.1021/bi991604m, PMID10653639 [dostęp 2021-03-26] (ang.).
  • B. Siebers i inni, Archaeal fructose-1,6-bisphosphate aldolases constitute a new family of archaeal type class I aldolase, „Journal of Biological Chemistry”, 276 (31), 2001, s. 28710–28718, DOI10.1074/jbc.M103447200, PMID11387336 [dostęp 2021-03-26] (ang.).
  • E. Lorentzen i inni, Structure, function and evolution of the Archaeal class I fructose-1,6-bisphosphate aldolase, „Biochemical Society Transactions”, 32 (Pt 2), 2004, s. 259–263, DOI10.1042/bst0320259, PMID15046584 [dostęp 2021-03-26] (ang.).
  • Nicola J. Patron, Matthew B. Rogers, Patrick J. Keeling, Gene replacement of fructose-1,6-bisphosphate aldolase supports the hypothesis of a single photosynthetic ancestor of chromalveolates, „Eukaryotic Cell”, 3 (5), 2004, s. 1169–1175, DOI10.1128/EC.3.5.1169-1175.2004, PMID15470245, PMCIDPMC522617 [dostęp 2021-03-26] (ang.).
  • S.M. Zgiby i inni, Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases, „European Journal of Biochemistry”, 267 (6), 2000, s. 1858–1868, DOI10.1046/j.1432-1327.2000.01191.x, PMID10712619 [dostęp 2021-03-26] (ang.).
  • H.C. Watson i inni, Sequence and structure of yeast phosphoglycerate kinase, „The EMBO Journal”, 1 (12), 1982, s. 1635–1640, PMID6765200, PMCIDPMC553262 [dostęp 2021-03-26] (ang.).
  • G. Auerbach i inni, Closed structure of phosphoglycerate kinase from Thermotoga maritima reveals the catalytic mechanism and determinants of thermal stability, „Structure”, 5 (11), 1997, s. 1475–1483, DOI10.1016/s0969-2126(97)00297-9, PMID9384563 [dostęp 2021-03-26] (ang.).
  • C.C. Blake, D.W. Rice, Phosphoglycerate kinase, „Philosophical Transactions of the Royal Society of London. Series B. Biological Sciences”, 293 (1063), 1981, s. 93–104, DOI10.1098/rstb.1981.0063, PMID6115427 [dostęp 2021-03-26] (ang.).
  • A.N. Szilágyi i inni, A 1.8 A resolution structure of pig muscle 3-phosphoglycerate kinase with bound MgADP and 3-phosphoglycerate in open conformation: new insight into the role of the nucleotide in domain closure, „Journal of Molecular Biology”, 306 (3), 2001, s. 499–511, DOI10.1006/jmbi.2000.4294, PMID11178909 [dostęp 2021-03-26] (ang.).
  • R.D. Banks i inni, Sequence, structure and activity of phosphoglycerate kinase: a possible hinge-bending enzyme, „Nature”, 279 (5716), 1979, s. 773–777, DOI10.1038/279773a0, PMID450128 [dostęp 2021-03-26] (ang.).
  • B.E. Bernstein, W.G. Hol, Crystal structures of substrates and products bound to the phosphoglycerate kinase active site reveal the catalytic mechanism, „Biochemistry”, 37 (13), 1998, s. 4429–4436, DOI10.1021/bi9724117, PMID9521762 [dostęp 2021-03-26] (ang.).
  • S. Kumar i inni, Folding funnels and conformational transitions via hinge-bending motions, „Cell Biochemistry and Biophysics”, 31 (2), 1999, s. 141–164, DOI10.1007/BF02738169, PMID10593256 [dostęp 2021-03-26] (ang.).
  • E. Zhang i inni, Mechanism of enolase: the crystal structure of asymmetric dimer enolase-2-phospho-D-glycerate/enolase-phosphoenolpyruvate at 2.0 Å resolution, „Biochemistry”, 36 (41), 1997, s. 12526–12534, DOI10.1021/bi9712450, PMID9376357 [dostęp 2021-03-26] (ang.).
  • V. Pancholi, Multifunctional α-enolase: its role in diseases, „Cellular and Molecular Life Sciences”, 58 (7), 2001, s. 902–920, DOI10.1007/pl00000910, PMID11497239 [dostęp 2021-03-26] (ang.).
  • M. Peshavaria, I.N. Day, Molecular structure of the human muscle-specific enolase gene (ENO3), „The Biochemical Journal”, 275 ( Pt 2), 1991, s. 427–433, DOI10.1042/bj2750427, PMID1840492, PMCIDPMC1150071 [dostęp 2021-03-26] (ang.).
  • T.M. Larsen i inni, A carboxylate oxygen of the substrate bridges the magnesium ions at the active site of enolase: structure of the yeast enzyme complexed with the equilibrium mixture of 2-phosphoglycerate and phosphoenolpyruvate at 1.8 Å resolution, „Biochemistry”, 35 (14), 1996, s. 4349–4358, DOI10.1021/bi952859c, PMID8605183 [dostęp 2021-03-26] (ang.).
  • J.E. Wedekind, G.H. Reed, I. Rayment, Octahedral coordination at the high-affinity metal site in enolase: crystallographic analysis of the MgII–enzyme complex from yeast at 1.9 Å resolution, „Biochemistry”, 34 (13), 1995, s. 4325–4330, DOI10.1021/bi00013a022, PMID7703246 [dostęp 2021-03-26] (ang.).
  • J.E. Wedekind i inni, Chelation of serine 39 to Mg2+ latches a gate at the active site of enolase: structure of the bis(Mg2+) complex of yeast enolase and the intermediate analog phosphonoacetohydroxamate at 2.1-Å resolution, „Biochemistry”, 33 (31), 1994, s. 9333–9342, DOI10.1021/bi00197a038, PMID8049235 [dostęp 2021-03-26] (ang.).
  • F.J. Hüther, N. Psarros, H. Duschner, Isolation, characterization, and inhibition kinetics of enolase from Streptococcus rattus FA-1, „Infection and Immunity”, 58 (4), 1990, s. 1043–1047, DOI10.1128/IAI.58.4.1043-1047.1990, PMID2318530, PMCIDPMC258580 [dostęp 2021-03-26] (ang.).
  • T.M. Larsen i inni, Structure of rabbit muscle pyruvate kinase complexed with Mn2+, K+, and pyruvate, „Biochemistry”, 33 (20), 1994, s. 6301–6309, DOI10.1021/bi00186a033, PMID8193145 [dostęp 2021-03-26] (ang.).
  • G. Valentini i inni, The allosteric regulation of pyruvate kinase, „Journal of Biological Chemistry”, 275 (24), 2000, s. 18145–18152, DOI10.1074/jbc.M001870200, PMID10751408 [dostęp 2021-03-26] (ang.).
  • William J. Cook i inni, Crystal structure of Cryptosporidium parvum pyruvate kinase, „PLoS One”, 7 (10), 2012, e46875, DOI10.1371/journal.pone.0046875, PMID23056503, PMCIDPMC3467265 [dostęp 2021-03-26] (ang.).
  • T. Dandekar i inni, Pathway alignment: application to the comparative analysis of glycolytic enzymes, „The Biochemical Journal”, 343 Pt 1, 1999, s. 115–124, PMID10493919, PMCIDPMC1220531 [dostęp 2021-03-26] (ang.).
  • M. Selig i inni, Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga, „Archives of Microbiology”, 167 (4), 1997, s. 217–232, DOI10.1007/BF03356097, PMID9075622 [dostęp 2021-03-26] (ang.).
  • E. Meléndez-Hevia i inni, Theoretical approaches to the evolutionary optimization of glycolysis--chemical analysis, „European Journal of Biochemistry”, 244 (2), 1997, s. 527–543, DOI10.1111/j.1432-1033.1997.t01-1-00527.x, PMID9119021 [dostęp 2021-03-26] (ang.).

worldcat.org

  • Hans Günter Schlegel, Mikrobiologia ogólna, Zdzisław Markiewicz (red.), wyd. 2 popr., Warszawa: Wydawnictwo Naukowe PWN, 2004, s. 295–296, ISBN 83-01-13999-4, OCLC 749371403.