K.I.K.I.BolotinK.I.K.I. i inni, Ultrahigh electron mobility in suspended graphene, „Solid State Communications”, 146 (9–10), 2008, s. 351–355, DOI: 10.1016/j.ssc.2008.02.024, arXiv:0802.2389 [dostęp 2021-03-16](ang.).
ZhengZ.HanZhengZ. i inni, Homogeneous Optical and Electronic Properties of Graphene Due to the Suppression of Multilayer Patches During CVD on Copper Foils, „Advanced Functional Materials”, 24 (7), 2014, s. 964–970, DOI: 10.1002/adfm.201301732, arXiv:1205.1337v1 [dostęp 2021-03-16](ang.).
A.J. VanA.J.V.BommelA.J. VanA.J.V., J.E.J.E.CrombeenJ.E.J.E., A. VanA.V.ToorenA. VanA.V., LEED and Auger electron observations of the SiC(0001) surface, „Surface Science”, 48 (2), 1975, s. 463–472, DOI: 10.1016/0039-6028(75)90419-7 [dostęp 2021-03-16](ang.).
ClaireC.BergerClaireC. i inni, Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics, „The Journal of Physical Chemistry B”, 108 (52), 2004, s. 19912–19916, DOI: 10.1021/jp040650f [dostęp 2021-03-16](ang.).
K.S.K.S.NovoselovK.S.K.S., Electric Field Effect in Atomically Thin Carbon Films, „Science”, 306 (5696), 2004, s. 666–669, DOI: 10.1126/science.1102896, PMID: 15499015 [dostęp 2021-03-16](ang.).
Alexander A.A.A.BalandinAlexander A.A.A. i inni, Superior Thermal Conductivity of Single-Layer Graphene, „Nano Letters”, 8 (3), 2008, s. 902–907, DOI: 10.1021/nl0731872 [dostęp 2021-03-16](ang.).
R.R.R.R.NairR.R.R.R. i inni, Fine Structure Constant Defines Visual Transparency of Graphene, „Science”, 320, 2008, s. 1308, DOI: 10.1126/science.1156965.
M.M.SprinkleM.M. i inni, First Direct Observation of a Nearly Ideal Graphene Band Structure, „Physical Review Letters”, 103 (22), 2009, art. nr 226803, DOI: 10.1103/PhysRevLett.103.226803 [dostęp 2021-03-16].
JJ.HicksJJ. i inni, The structure of graphene grown on the SiC $(0\,0\,0\bar{1})$ surface, „Journal of Physics D: Applied Physics”, 45 (15), 2012, art. nr 154002, DOI: 10.1088/0022-3727/45/15/154002 [dostęp 2021-03-16].
A.K.A.K.GeimA.K.A.K., K.S.K.S.NovoselovK.S.K.S., The rise of graphene, „Nature Materials”, 6 (3), 2007, s. 183–191, DOI: 10.1038/nmat1849 [dostęp 2021-03-16](ang.).
A.H. CastroA.H.C.NetoA.H. CastroA.H.C. i inni, The electronic properties of graphene, „Reviews of Modern Physics”, 81 (1), 2009, s. 109–162, DOI: 10.1103/RevModPhys.81.109 [dostęp 2021-03-16](ang.).
John J.J.J.CastilloJohn J.J.J. i inni, Detection of cancer cells using a peptidenanotube–folic acid modified graphene electrode, „The Analyst”, 138 (4), 2013, s. 1026–1031, DOI: 10.1039/C2AN36121C [dostęp 2021-03-16](ang.).
JuanniJ.ChenJuanniJ., XiupingX.WangXiupingX., HeyouH.HanHeyouH., A new function of graphene oxide emerges: inactivating phytopathogenic bacterium Xanthomonas oryzae pv. Oryzae, „Journal of Nanoparticle Research”, 15 (5), 2013, s. 1658, DOI: 10.1007/s11051-013-1658-6 [dostęp 2021-03-16](ang.).
ChaofanCh.HuChaofanCh. i inni, Fabrication of Reduced Graphene Oxide and Sliver Nanoparticle Hybrids for Raman Detection of Absorbed Folic Acid: A Potential Cancer Diagnostic Probe, „ACS Applied Materials & Interfaces”, 5 (11), 2013, s. 4760–4768, DOI: 10.1021/am4000485 [dostęp 2021-03-16](ang.).
Oh SeokO.S.KwonOh SeokO.S. i inni, Large-Scale Graphene Micropattern Nano-biohybrids: High-Performance Transducers for FET-Type Flexible Fluidic HIV Immunoassays, „Advanced Materials”, 25 (30), 2013, s. 4177–4185, DOI: 10.1002/adma.201301523 [dostęp 2020-09-16](ang.).
XindongX.WangXindongX. i inni, Electrochemical immunosensor with graphene quantum dots and apoferritin-encapsulated Cu nanoparticles double-assisted signal amplification for detection of avian leukosis virus subgroup J, „Biosensors and Bioelectronics”, 47, 2013, s. 171–177, DOI: 10.1016/j.bios.2013.03.021 [dostęp 2020-09-16](ang.).
LuoranL.ShangLuoranL. i inni, Graphene and Graphene Oxide for Tissue Engineering and Regeneration, [w:] WenguoW.Cui, XinX.Zhao (red.), Theranostic Bionanomaterials. Micro and Nano Technologies, Elsevier, 2019, s. 165–185, DOI: 10.1016/b978-0-12-815341-3.00007-9, ISBN 978-0-12-815341-3(ang.).
KandasamyK.VinothiniKandasamyK., MariappanM.RajanMariappanM., Investigation on the use of graphene as a unique drug delivery platform for dissimilar anticancer drugs, „Progress in Bioscience and Bioengineering”, 1 (1), 2017, DOI: 10.29269/pbb2017.v1i1.2 [dostęp 2020-09-16](ang.).
Roda F.R.F.Al-ThaniRoda F.R.F., Noorunnisa KhanamN.K.PatanNoorunnisa KhanamN.K., Mariam A.M.A.Al-MaadeedMariam A.M.A., Graphene oxide as antimicrobial against two gram-positive and two gram-negative bacteria in addition to one fungus, „OnLine Journal of Biological Sciences”, 14 (3), 2014, s. 230–239, DOI: 10.3844/ojbsci.2014.230.239 [dostęp 2020-09-16](ang.).
Hüseyin EnisH.E.KarahanHüseyin EnisH.E. i inni, Graphene Materials in Antimicrobial Nanomedicine: Current Status and Future Perspectives, „Advanced Healthcare Materials”, 7 (13), 2018, s. 1701406, DOI: 10.1002/adhm.201701406 [dostęp 2020-09-16](ang.).
Y.-M.Y.M.LinY.-M.Y.M. i inni, 100-GHz transistors from wafer-scale epitaxial graphene, „Science”, 327 (5966), 2010, s. 662, DOI: 10.1126/science.1184289, PMID: 20133565 [dostęp 2021-03-16](ang.).
K.I.K.I.BolotinK.I.K.I. i inni, Ultrahigh electron mobility in suspended graphene, „Solid State Communications”, 146 (9–10), 2008, s. 351–355, DOI: 10.1016/j.ssc.2008.02.024, arXiv:0802.2389 [dostęp 2021-03-16](ang.).
X.X.LiX.X. i inni, Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, „Science”, 324 (5932), 2009, s. 1312–1314, DOI: 10.1126/science.1171245, PMID: 19423775 [dostęp 2021-03-16](ang.).
ZhengZ.HanZhengZ. i inni, Homogeneous Optical and Electronic Properties of Graphene Due to the Suppression of Multilayer Patches During CVD on Copper Foils, „Advanced Functional Materials”, 24 (7), 2014, s. 964–970, DOI: 10.1002/adfm.201301732, arXiv:1205.1337v1 [dostęp 2021-03-16](ang.).
K.S.K.S.NovoselovK.S.K.S., Electric Field Effect in Atomically Thin Carbon Films, „Science”, 306 (5696), 2004, s. 666–669, DOI: 10.1126/science.1102896, PMID: 15499015 [dostęp 2021-03-16](ang.).
Y.-M.Y.M.LinY.-M.Y.M. i inni, 100-GHz transistors from wafer-scale epitaxial graphene, „Science”, 327 (5966), 2010, s. 662, DOI: 10.1126/science.1184289, PMID: 20133565 [dostęp 2021-03-16](ang.).
X.X.LiX.X. i inni, Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, „Science”, 324 (5932), 2009, s. 1312–1314, DOI: 10.1126/science.1171245, PMID: 19423775 [dostęp 2021-03-16](ang.).