Modelowe błony bakteryjne (Polish Wikipedia)

Analysis of information sources in references of the Wikipedia article "Modelowe błony bakteryjne" in Polish language version.

refsWebsite
Global rank Polish rank
2nd place
6th place
4th place
7th place
610th place
682nd place

doi.org

dx.doi.org

  • Ashley B. Carey, Alex Ashenden, Ingo Köper, Model architectures for bacterial membranes, „Biophysical Reviews”, 14 (1), 2022, s. 111–143, DOI10.1007/s12551-021-00913-7, PMID35340604, PMCIDPMC8921416 [dostęp 2024-05-10] (ang.).
  • Shiqi Li i inni, Solid and Liquid Surface-Supported Bacterial Membrane Mimetics as a Platform for the Functional and Structural Studies of Antimicrobials, „Membranes”, 12 (10), 2022, s. 906, DOI10.3390/membranes12100906, PMID36295664, PMCIDPMC9609327 [dostęp 2024-05-10] (ang.).
  • Yongchao Su i inni, Structures of β-Hairpin Antimicrobial Protegrin Peptides in Lipopolysaccharide Membranes: Mechanism of Gram Selectivity Obtained from Solid-State Nuclear Magnetic Resonance, „Biochemistry”, 50 (12), 2011, s. 2072–2083, DOI10.1021/bi101975v, PMID21302955, PMCIDPMC3062705 [dostęp 2024-05-10] (ang.).
  • Antoine-Emmanuel Saliba i inni, A quantitative liposome microarray to systematically characterize protein-lipid interactions, „Nature Methods”, 11 (1), 2014, s. 47–50, DOI10.1038/nmeth.2734 [dostęp 2024-05-10] (ang.).
  • E. Sackmann, Supported Membranes: Scientific and Practical Applications, „Science”, 271 (5245), 1996, s. 43–48, DOI10.1126/science.271.5245.43 [dostęp 2024-05-10] (ang.).
  • Jakob Andersson i inni, Solid-supported lipid bilayers – A versatile tool for the structural and functional characterization of membrane proteins, „Methods”, 180, 2020, s. 56–68, DOI10.1016/j.ymeth.2020.09.005 [dostęp 2024-05-10] (ang.).
  • Małgorzata Jurak, Robert Mroczka, Rafał Łopucki, Properties of Artificial Phospholipid Membranes Containing Lauryl Gallate or Cholesterol, „The Journal of Membrane Biology”, 251 (2), 2018, s. 277–294, DOI10.1007/s00232-018-0025-z, PMID29516109, PMCIDPMC5910520 [dostęp 2024-05-10] (ang.).
  • Marta Palusińska-Szysz i inni, The human LL-37 peptide exerts antimicrobial activity against Legionella micdadei interacting with membrane phospholipids, „Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids”, 1867 (6), 2022, s. 159138, DOI10.1016/j.bbalip.2022.159138 [dostęp 2024-05-10] (ang.).
  • Katarzyna Pastuszak i inni, Susceptibility of Legionella gormanii Membrane-Derived Phospholipids to the Peptide Action of Antimicrobial LL-37—Langmuir Monolayer Studies, „Molecules”, 29 (7), 2024, s. 1522, DOI10.3390/molecules29071522, PMID38611802, PMCIDPMC11013288 [dostęp 2024-05-10] (ang.).
  • Marta Majewska i inni, Interaction of LL-37 human cathelicidin peptide with a model microbial-like lipid membrane, „Bioelectrochemistry”, 141, 2021, s. 107842, DOI10.1016/j.bioelechem.2021.107842 [dostęp 2024-05-10] (ang.).
  • Monika Rojewska i inni, Langmuir Monolayer Techniques for the Investigation of Model Bacterial Membranes and Antibiotic Biodegradation Mechanisms, „Membranes”, 11 (9), 2021, s. 707, DOI10.3390/membranes11090707, PMID34564524, PMCIDPMC8471293 [dostęp 2024-05-10] (ang.).
  • Zeinab Mohamed i inni, Clinically Relevant Bacterial Outer Membrane Models for Antibiotic Screening Applications, „ACS Infectious Diseases”, 7 (9), 2021, s. 2707–2722, DOI10.1021/acsinfecdis.1c00217 [dostęp 2024-05-10] (ang.).
  • Rhoderick E. Brown, Howard L. Brockman, Using Monomolecular Films to Characterize Lipid Lateral Interactions, t. 398, Totowa, NJ: Humana Press, 2007, s. 41–58, DOI10.1007/978-1-59745-513-8_5, ISBN 978-1-58829-729-7, PMID18214373, PMCIDPMC2612596.
  • Vladimir M. Kaganer, Helmuth Möhwald, Pulak Dutta, Structure and phase transitions in Langmuir monolayers, „Reviews of Modern Physics”, 71 (3), 1999, s. 779–819, DOI10.1103/RevModPhys.71.779 [dostęp 2024-05-10] (ang.).
  • Frances Neville i inni, Lipid Headgroup Discrimination by Antimicrobial Peptide LL-37: Insight into Mechanism of Action, „Biophysical Journal”, 90 (4), 2006, s. 1275–1287, DOI10.1529/biophysj.105.067595, PMID16299073, PMCIDPMC1367279 [dostęp 2024-05-10] (ang.).
  • Małgorzata Jurak i inni, Analysis of Molecular Interactions between Components in Phospholipid-Immunosuppressant-Antioxidant Mixed Langmuir Films, „Langmuir”, 37 (18), 2021, s. 5601–5616, DOI10.1021/acs.langmuir.1c00434, PMID33915045, PMCIDPMC8280729 [dostęp 2024-05-10] (ang.).
  • Katarzyna Pastuszak i inni, Physicochemical Characteristics of Model Membranes Composed of Legionella gormanii Lipids, „Membranes”, 13 (3), 2023, s. 356, DOI10.3390/membranes13030356, PMID36984743, PMCIDPMC10058700 [dostęp 2024-05-10] (ang.).
  • David L. Schwinke, M.G. Ganesan, N.D. Weiner, Monolayer Studies of Insulin–Lipid Interactions, „Journal of Pharmaceutical Sciences”, 72 (3), 1983, s. 244–248, DOI10.1002/jps.2600720311, PMID6341537 [dostęp 2024-04-29] (ang.).
  • Régine Maget-Dana, The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes, „Biochimica et Biophysica Acta (BBA) - Biomembranes”, 1462 (1-2), 1999, s. 109–140, DOI10.1016/S0005-2736(99)00203-5 [dostęp 2024-04-24] (ang.).
  • Katarzyna Pastuszak i inni, Insight into the Mechanism of Interactions between the LL-37 Peptide and Model Membranes of Legionella gormanii Bacteria, „International Journal of Molecular Sciences”, 24 (15), 2023, s. 12039, DOI10.3390/ijms241512039, PMID37569419, PMCIDPMC10418352 [dostęp 2024-04-24] (ang.).
  • Michalakis Savva, Balasubramanian Sivakumar, Bilge Selvi, The conventional Langmuir trough technique as a convenient means to determine the solubility of sparingly soluble surface-active molecules: Case study Cholesterol, „Colloids and Surfaces A: Physicochemical and Engineering Aspects”, 325 (1-2), 2008, s. 1–6, DOI10.1016/j.colsurfa.2008.04.025, PMID19609337, PMCIDPMC2630220 [dostęp 2024-04-29] (ang.).
  • Wanda Barzyk, Ewa Rogalska, Katarzyna Więcław-Czapla, Penetration of Milk-Derived Antimicrobial Peptides into Phospholipid Monolayers as Model Biomembranes, „Biochemistry Research International”, 2013, 2013, s. 1–16, DOI10.1155/2013/914540, PMID24455264, PMCIDPMC3877611 [dostęp 2024-04-24] (ang.).
  • E. Sevcsik i inni, Interaction of LL-37 with Model Membrane Systems of Different Complexity: Influence of the Lipid Matrix, „Biophysical Journal”, 94 (12), 2008, s. 4688–4699, DOI10.1529/biophysj.107.123620, PMID18326643, PMCIDPMC2397346 [dostęp 2024-04-29] (ang.).

elsevier.com

linkinghub.elsevier.com

nih.gov

ncbi.nlm.nih.gov

  • Ashley B. Carey, Alex Ashenden, Ingo Köper, Model architectures for bacterial membranes, „Biophysical Reviews”, 14 (1), 2022, s. 111–143, DOI10.1007/s12551-021-00913-7, PMID35340604, PMCIDPMC8921416 [dostęp 2024-05-10] (ang.).
  • Shiqi Li i inni, Solid and Liquid Surface-Supported Bacterial Membrane Mimetics as a Platform for the Functional and Structural Studies of Antimicrobials, „Membranes”, 12 (10), 2022, s. 906, DOI10.3390/membranes12100906, PMID36295664, PMCIDPMC9609327 [dostęp 2024-05-10] (ang.).
  • Yongchao Su i inni, Structures of β-Hairpin Antimicrobial Protegrin Peptides in Lipopolysaccharide Membranes: Mechanism of Gram Selectivity Obtained from Solid-State Nuclear Magnetic Resonance, „Biochemistry”, 50 (12), 2011, s. 2072–2083, DOI10.1021/bi101975v, PMID21302955, PMCIDPMC3062705 [dostęp 2024-05-10] (ang.).
  • Małgorzata Jurak, Robert Mroczka, Rafał Łopucki, Properties of Artificial Phospholipid Membranes Containing Lauryl Gallate or Cholesterol, „The Journal of Membrane Biology”, 251 (2), 2018, s. 277–294, DOI10.1007/s00232-018-0025-z, PMID29516109, PMCIDPMC5910520 [dostęp 2024-05-10] (ang.).
  • Katarzyna Pastuszak i inni, Susceptibility of Legionella gormanii Membrane-Derived Phospholipids to the Peptide Action of Antimicrobial LL-37—Langmuir Monolayer Studies, „Molecules”, 29 (7), 2024, s. 1522, DOI10.3390/molecules29071522, PMID38611802, PMCIDPMC11013288 [dostęp 2024-05-10] (ang.).
  • Monika Rojewska i inni, Langmuir Monolayer Techniques for the Investigation of Model Bacterial Membranes and Antibiotic Biodegradation Mechanisms, „Membranes”, 11 (9), 2021, s. 707, DOI10.3390/membranes11090707, PMID34564524, PMCIDPMC8471293 [dostęp 2024-05-10] (ang.).
  • Rhoderick E. Brown, Howard L. Brockman, Using Monomolecular Films to Characterize Lipid Lateral Interactions, t. 398, Totowa, NJ: Humana Press, 2007, s. 41–58, DOI10.1007/978-1-59745-513-8_5, ISBN 978-1-58829-729-7, PMID18214373, PMCIDPMC2612596.
  • Frances Neville i inni, Lipid Headgroup Discrimination by Antimicrobial Peptide LL-37: Insight into Mechanism of Action, „Biophysical Journal”, 90 (4), 2006, s. 1275–1287, DOI10.1529/biophysj.105.067595, PMID16299073, PMCIDPMC1367279 [dostęp 2024-05-10] (ang.).
  • Małgorzata Jurak i inni, Analysis of Molecular Interactions between Components in Phospholipid-Immunosuppressant-Antioxidant Mixed Langmuir Films, „Langmuir”, 37 (18), 2021, s. 5601–5616, DOI10.1021/acs.langmuir.1c00434, PMID33915045, PMCIDPMC8280729 [dostęp 2024-05-10] (ang.).
  • Katarzyna Pastuszak i inni, Physicochemical Characteristics of Model Membranes Composed of Legionella gormanii Lipids, „Membranes”, 13 (3), 2023, s. 356, DOI10.3390/membranes13030356, PMID36984743, PMCIDPMC10058700 [dostęp 2024-05-10] (ang.).
  • David L. Schwinke, M.G. Ganesan, N.D. Weiner, Monolayer Studies of Insulin–Lipid Interactions, „Journal of Pharmaceutical Sciences”, 72 (3), 1983, s. 244–248, DOI10.1002/jps.2600720311, PMID6341537 [dostęp 2024-04-29] (ang.).
  • Katarzyna Pastuszak i inni, Insight into the Mechanism of Interactions between the LL-37 Peptide and Model Membranes of Legionella gormanii Bacteria, „International Journal of Molecular Sciences”, 24 (15), 2023, s. 12039, DOI10.3390/ijms241512039, PMID37569419, PMCIDPMC10418352 [dostęp 2024-04-24] (ang.).
  • Michalakis Savva, Balasubramanian Sivakumar, Bilge Selvi, The conventional Langmuir trough technique as a convenient means to determine the solubility of sparingly soluble surface-active molecules: Case study Cholesterol, „Colloids and Surfaces A: Physicochemical and Engineering Aspects”, 325 (1-2), 2008, s. 1–6, DOI10.1016/j.colsurfa.2008.04.025, PMID19609337, PMCIDPMC2630220 [dostęp 2024-04-29] (ang.).
  • Wanda Barzyk, Ewa Rogalska, Katarzyna Więcław-Czapla, Penetration of Milk-Derived Antimicrobial Peptides into Phospholipid Monolayers as Model Biomembranes, „Biochemistry Research International”, 2013, 2013, s. 1–16, DOI10.1155/2013/914540, PMID24455264, PMCIDPMC3877611 [dostęp 2024-04-24] (ang.).
  • E. Sevcsik i inni, Interaction of LL-37 with Model Membrane Systems of Different Complexity: Influence of the Lipid Matrix, „Biophysical Journal”, 94 (12), 2008, s. 4688–4699, DOI10.1529/biophysj.107.123620, PMID18326643, PMCIDPMC2397346 [dostęp 2024-04-29] (ang.).