Nadprzewodnictwo (Polish Wikipedia)

Analysis of information sources in references of the Wikipedia article "Nadprzewodnictwo" in Polish language version.

refsWebsite
Global rank Polish rank
2nd place
6th place
69th place
224th place
347th place
4th place
1,503rd place
948th place

aps.org

meetings.aps.org

arxiv.org

  • A.P. Drozdov i inni, Superconductivity at 215 K in lanthanum hydride at high pressures, „arXiv: [cond-mat]”, 21 sierpnia 2018, arXiv:1808.07039 [dostęp 2018-12-21].
  • A.P. Drozdov i inni, Superconductivity at 250 K in lanthanum hydride under high pressures, „arXiv: [cond-mat]”, 4 grudnia 2018, arXiv:1812.01561 [dostęp 2018-12-21].

doi.org

  • K. Shimizu i inni. Superconductivity in the non-magnetic state of iron under pressure. „Nature”. 412, s. 316, 2001. DOI: 10.1038/35085536.  Przy wysokim ciśnieniu żelazo traci właściwości ferromagnetyczne i po osiągnięciu 20GPa przechodzi w stan nadprzewodnictwa w temperaturze 1.8K.
  • K. Shimizu i inni. Superconductivity in compressed lithium at 20 K. „Nature”. 419, s. 597, 2002. DOI: 10.1038/nature01098.  Przy ciśnieniu 48GPa lit przechodzi w stan nadprzewodnictwa w temperaturze 20K, co jak dotychczas jest najwyższą temperaturą krytyczną osiągniętą dla pierwiastka.
  • M.B. Brodsky. Superconductivity in Au/Cr/Au epitaxial metal film sandwiches (EMFS). „Solid State Communications”. 42, s. 675, 1981. DOI: 10.1016/0038-1098(82)90815-8. 
  • Ksenon przy ciśnieniu 155GPa przechodzi w stan metaliczny, ale jak dotychczas nie zaobserwowano śladów nadprzewodnictwa. M.I. Eremets i inni. Electrical Conductivity of Xenon at Megabar Pressures. „Physical Review Letters”. 85, s. 2797, 2000. DOI: 10.1103/PhysRevLett.85.2797. 
  • Pod dużym ciśnieniem wykryto w wodorze ciekłą fazę metaliczną, ale jak dotychczas nie zaobserwowano efektów nadprzewodnictwa. W.J. Nellis i inni. Minimum metallic conductivity of fluid hydrogen at 140 GPa (1.4 Mbar). „Physical Review B”. 59, s. 3434, 1999. DOI: 10.1103/PhysRevB.59.3434. 
  • Teoretycznie postuluje się występowanie nadprzewodnictwa w wodorze pod ekstremalnie dużym ciśnieniem: R. Szczęśniak, M.W. Jarosik. The superconducting state in metallic hydrogen under pressure at 2000 GPa. „Solid State Communications”. 149, s. 2053–2057, 2009. DOI: 10.1016/j.ssc.2009.08.019. 
  • Z. K. Tang i inni. Superconductivity in 4 Angstrom Single-Walled Carbon Nanotubes. „Science”. 292, s. 2462, 2001. DOI: 10.1126/science.1060470. 
  • S.S. Saxena i inni. Superconductivity on the border of itinerant-electron ferromagnetism in UGe2. „Nature”. 406, s. 587, 2000. DOI: 10.1038/35020500. 
  • Dai Aoki i inni. Coexistence of superconductivity and ferromagnetism in URhGe. „Nature”. 413, s. 613, 2001. DOI: 10.1038/35098048. 
  • W. Meissner und R. Ochsenfeld. Ein neuer Effekt bei Eintritt der Supraleitfähigkeit. „Naturwissenschaften”. 21, s. 787, 1933. DOI: 10.1007/BF01504252. 
  • C.A. Reynolds i inni. Superconductivity of Isotopes of Mercury. „Phys. Rev.”. 78, s. 487, 1950. DOI: 10.1103/PhysRev.78.487. 
  • E. Maxwell. Isotope Effect in the Superconductivity of Mercury. „Phys. Rev.”. 78, s. 477, 1950. DOI: 10.1103/PhysRev.78.477. 
  • L. Cooper. Bound Electron Pairs in a Degenerate Fermi Gas. „Physical Review”. 104, s. 1189, 1956. DOI: 10.1103/PhysRev.104.1189. 

pwn.pl

encyklopedia.pwn.pl