Szkielety metalo-organiczne (Polish Wikipedia)

Analysis of information sources in references of the Wikipedia article "Szkielety metalo-organiczne" in Polish language version.

refsWebsite
Global rank Polish rank
2nd place
6th place
5th place
2nd place
4th place
7th place
low place
8,569th place
low place
519th place
low place
low place
low place
357th place
485th place
620th place

doi.org

dx.doi.org

  • Omar M. Yaghi, Markus J. Kalmutzki, Christian S. Diercks, Introduction to Reticular Chemistry: Metal‐Organic Frameworks and Covalent Organic Frameworks, wyd. 1, Wiley, 6 maja 2019, DOI10.1002/9783527821099, ISBN 978-3-527-34502-1 [dostęp 2022-04-12] (ang.).
  • Hong-Cai Zhou, Jeffrey R. Long, Omar M. Yaghi, Introduction to Metal–Organic Frameworks, „Chemical Reviews”, 112 (2), 2012, s. 673–674, DOI10.1021/cr300014x [dostęp 2024-06-27] (ang.).
  • Przemysław J. Jodłowski i inni, Silver and copper modified zeolite imidazole frameworks as sustainable methane storage systems, „Journal of Cleaner Production”, 352, 2022, s. 131638, DOI10.1016/j.jclepro.2022.131638 [dostęp 2024-06-27] (ang.).
  • Przemysław J. Jodłowski i inni, Cracking the Chloroquine Conundrum: The Application of Defective UiO-66 Metal–Organic Framework Materials to Prevent the Onset of Heart Defects—In Vivo and In Vitro, „ACS Applied Materials & Interfaces”, 13 (1), 2021, s. 312–323, DOI10.1021/acsami.0c21508 [dostęp 2024-06-27] (ang.).
  • Long Jiao i inni, Metal–organic frameworks: Structures and functional applications, „Materials Today”, 27, 2019, s. 43–68, DOI10.1016/j.mattod.2018.10.038 [dostęp 2022-04-12] (ang.).
  • Hailian Li i inni, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, „Nature”, 402 (6759), 1999, s. 276–279, DOI10.1038/46248, ISSN 1476-4687 [dostęp 2022-04-11] (ang.).
  • Stefan Kaskel (red.), The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications: Synthesis, Characterization, and Applications, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016, DOI10.1002/9783527693078, ISBN 978-3-527-33874-0 [dostęp 2022-04-14] (ang.).
  • Omar K. Farha i inni, Control over Catenation in Metal−Organic Frameworks via Rational Design of the Organic Building Block, „Journal of the American Chemical Society”, 132 (3), 2010, s. 950–952, DOI10.1021/ja909519e, ISSN 0002-7863 [dostęp 2022-04-13].
  • Shengqian Ma i inni, Further Investigation of the Effect of Framework Catenation on Hydrogen Uptake in Metal−Organic Frameworks, „Journal of the American Chemical Society”, 130 (47), 2008, s. 15896–15902, DOI10.1021/ja803492q, ISSN 0002-7863 [dostęp 2022-04-14] (ang.).
  • Hexiang Deng i inni, Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks, „Science”, 327 (5967), 2010, s. 846–850, DOI10.1126/science.1181761, ISSN 0036-8075 [dostęp 2022-04-11] (ang.).
  • Validate User, academic.oup.com, DOI10.1093/nsr/nwx013 [dostęp 2022-04-11].
  • Yang Wang i inni, A Tunable Multivariate Metal–Organic Framework as a Platform for Designing Photocatalysts, „Journal of the American Chemical Society”, 143 (17), 2021, s. 6333–6338, DOI10.1021/jacs.1c01764, ISSN 0002-7863, PMID33900747, PMCIDPMC8297731 [dostęp 2022-04-11].
  • Norbert Stock, Shyam Biswas, Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites, „Chemical Reviews”, 112 (2), 2012, s. 933–969, DOI10.1021/cr200304e, ISSN 0009-2665 [dostęp 2022-04-14] (ang.).
  • Fu-Gui Xi i inni, An in situ approach to functionalize metal–organic frameworks with tertiary aliphatic amino groups, „Chemical Communications”, 56 (86), 2020, s. 13177–13180, DOI10.1039/D0CC05568A, ISSN 1359-7345 [dostęp 2022-04-14] (ang.).
  • Norbert Stock, Shyam Biswas, Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites, „Chemical Reviews”, 112 (2), 2012, s. 933–969, DOI10.1021/cr200304e, ISSN 0009-2665 [dostęp 2022-04-12].
  • Yu-Ri Lee, Jun Kim, Wha-Seung Ahn, Synthesis of metal-organic frameworks: A mini review, „Korean Journal of Chemical Engineering”, 30 (9), 2013, s. 1667–1680, DOI10.1007/s11814-013-0140-6, ISSN 0256-1115 [dostęp 2022-04-12] (ang.).
  • Min Kim i inni, Postsynthetic ligand exchange as a route to functionalization of ‘inert’ metal–organic frameworks, „Chem. Sci.”, 3 (1), 2012, s. 126–130, DOI10.1039/C1SC00394A, ISSN 2041-6520 [dostęp 2022-04-11] (ang.).
  • Florencia A. Son i inni, Solvent-assisted linker exchange enabled preparation of cerium-based metal–organic frameworks constructed from redox active linkers, „Inorganic Chemistry Frontiers”, 7 (4), 2020, s. 984–990, DOI10.1039/C9QI01218D, ISSN 2052-1553 [dostęp 2022-04-12] (ang.).
  • Olga Karagiaridi i inni, Solvent-Assisted Linker Exchange: An Alternative to the De Novo Synthesis of Unattainable Metal-Organic Frameworks, „Angewandte Chemie International Edition”, 53 (18), 2014, s. 4530–4540, DOI10.1002/anie.201306923 [dostęp 2022-04-12] (ang.).
  • Olga Karagiaridi i inni, Opening Metal–Organic Frameworks Vol. 2: Inserting Longer Pillars into Pillared-Paddlewheel Structures through Solvent-Assisted Linker Exchange, „Chemistry of Materials”, 25 (17), 2013, s. 3499–3503, DOI10.1021/cm401724v, ISSN 0897-4756 [dostęp 2022-04-14].
  • Yasamin Noori, Kamran Akhbari, Post-synthetic ion-exchange process in nanoporous metal–organic frameworks; an effective way for modulating their structures and properties, „RSC Advances”, 7 (4), 2017, s. 1782–1808, DOI10.1039/C6RA24958B, ISSN 2046-2069 [dostęp 2022-04-12] (ang.).
  • Min Kim i inni, Postsynthetic Ligand and Cation Exchange in Robust Metal–Organic Frameworks, „Journal of the American Chemical Society”, 134 (43), 2012, s. 18082–18088, DOI10.1021/ja3079219, ISSN 0002-7863 [dostęp 2022-04-14] (ang.).
  • Pawan Kumar i inni, Metal-organic frameworks: Challenges and opportunities for ion-exchange/sorption applications, „Progress in Materials Science”, 86, 2017, s. 25–74, DOI10.1016/j.pmatsci.2017.01.002, ISSN 0079-6425 [dostęp 2022-04-12] (ang.).
  • Megan C. Wasson i inni, Metal–organic frameworks: A tunable platform to access single-site heterogeneous catalysts, „Applied Catalysis A: General”, 586, 2019, s. 117214, DOI10.1016/j.apcata.2019.117214, ISSN 0926-860X [dostęp 2022-04-12] (ang.).
  • Stephan Bernt i inni, Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid, „Chemical Communications”, 47 (10), 2011, s. 2838–2840, DOI10.1039/C0CC04526H, ISSN 1364-548X [dostęp 2022-04-11] (ang.).
  • A.M. Rasero-Almansa i inni, Design of a Bifunctional Ir-Zr Based Metal-Organic Framework Heterogeneous Catalyst for the N-Alkylation of Amines with Alcohols, „ChemCatChem”, 6 (6), 2014, s. 1794–1800, DOI10.1002/cctc.201402101 [dostęp 2022-04-14] (ang.).
  • Feng-Ming Zhang i inni, Postsynthetic Modification of ZIF-90 for Potential Targeted Codelivery of Two Anticancer Drugs, „ACS Applied Materials & Interfaces”, 9 (32), 2017, s. 27332–27337, DOI10.1021/acsami.7b08451, ISSN 1944-8244 [dostęp 2022-04-14] (ang.).
  • Moones Pourkhosravani i inni, Designing new catalytic nanoreactors for the regioselective epoxidation of geraniol by the post-synthetic immobilization of oxovanadium(IV) complexes on a ZrIV-based metal–organic framework, „Reaction Kinetics, Mechanisms and Catalysis”, 122 (2), 2017, s. 961–981, DOI10.1007/s11144-017-1253-4, ISSN 1878-5190 [dostęp 2022-04-14] (ang.).
  • Andrew D. Burrows, Luke L. Keenan, Conversion of primary amines into secondary amines on a metal–organic framework using a tandem post-synthetic modification, „CrystEngComm”, 14 (12), 2012, s. 4112, DOI10.1039/c2ce25131k, ISSN 1466-8033 [dostęp 2022-04-14] (ang.).
  • Heshmatollah Alinezhad, Shahram Ghasemi, Mansoureh Cheraghian, MOF nano porous-supported C-S cross coupling through one-pot post-synthetic modification, „Journal of Organometallic Chemistry”, 898, 2019, s. 120867, DOI10.1016/j.jorganchem.2019.07.018 [dostęp 2022-04-14] (ang.).
  • Saba Daliran i inni, A Pyridyltriazol Functionalized Zirconium Metal–Organic Framework for Selective and Highly Efficient Adsorption of Palladium, „ACS Applied Materials & Interfaces”, 12 (22), 2020, s. 25221–25232, DOI10.1021/acsami.0c06672, ISSN 1944-8244 [dostęp 2022-04-14] (ang.).
  • Bijian Li i inni, Postsynthetic Modification of an Alkyne-Tagged Zirconium Metal–Organic Framework via a “Click” Reaction, „Inorganic Chemistry”, 54 (11), 2015, s. 5139–5141, DOI10.1021/acs.inorgchem.5b00535, ISSN 0020-1669 [dostęp 2022-04-14] (ang.).
  • Luis Garzón-Tovar i inni, Spray Drying for Making Covalent Chemistry: Postsynthetic Modification of Metal–Organic Frameworks, „Journal of the American Chemical Society”, 139 (2), 2017, s. 897–903, DOI10.1021/jacs.6b11240, ISSN 0002-7863 [dostęp 2022-04-14] (ang.).
  • Alexander U. Czaja, Natalia Trukhan, Ulrich Müller, Industrial applications of metal–organic frameworks, „Chemical Society Reviews”, 38 (5), 2009, s. 1284, DOI10.1039/b804680h, ISSN 0306-0012 [dostęp 2022-04-11] (ang.).
  • Leslie J. Murray, Mircea Dincă, Jeffrey R. Long, Hydrogen storage in metal–organic frameworks, „Chemical Society Reviews”, 38 (5), 2009, s. 1294, DOI10.1039/b802256a, ISSN 0306-0012 [dostęp 2022-04-11] (ang.).
  • Yohanes Pramudya, Jose L. Mendoza-Cortes, Design Principles for High H 2 Storage Using Chelation of Abundant Transition Metals in Covalent Organic Frameworks for 0–700 bar at 298 K, „Journal of the American Chemical Society”, 138 (46), 2016, s. 15204–15213, DOI10.1021/jacs.6b08803, ISSN 0002-7863 [dostęp 2022-04-11] (ang.).
  • Omar M. Yaghi, Markus J. Kalmutzki, Christian S. Diercks, Introduction to Reticular Chemistry: Metal‐Organic Frameworks and Covalent Organic Frameworks, wyd. 1, Wiley, 6 maja 2019, DOI10.1002/9783527821099.ch15, ISBN 978-3-527-34502-1 [dostęp 2022-04-11] (ang.).
  • Zhijie Chen i inni, Balancing volumetric and gravimetric uptake in highly porous materials for clean energy, „Science”, 368 (6488), 2020, s. 297–303, DOI10.1126/science.aaz8881, ISSN 0036-8075 [dostęp 2022-04-11] (ang.).
  • Alauddin Ahmed i inni, Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks, „Nature Communications”, 10 (1), 2019, s. 1568, DOI10.1038/s41467-019-09365-w, ISSN 2041-1723, PMID30952862, PMCIDPMC6450936 [dostęp 2022-04-11] (ang.).
  • Rui-Biao Lin i inni, Microporous Metal-Organic Framework Materials for Gas Separation, „Chem”, 6 (2), 2020, s. 337–363, DOI10.1016/j.chempr.2019.10.012, ISSN 2451-9294 [dostęp 2022-04-11] (ang.).
  • Debasis Banerjee i inni, Potential of Metal–Organic Frameworks for Separation of Xenon and Krypton, „Accounts of Chemical Research”, 48 (2), 2015, s. 211–219, DOI10.1021/ar5003126, ISSN 0001-4842 [dostęp 2022-04-11].
  • Libo Li i inni, Efficient separation of ethylene from acetylene/ethylene mixtures by a flexible-robust metal–organic framework, „Journal of Materials Chemistry A”, 5 (36), 2017, s. 18984–18988, DOI10.1039/C7TA05598F, ISSN 2050-7496 [dostęp 2022-04-11] (ang.).
  • Huda I. Aljaddua, Mosaed S. Alhumaimess, Hassan M.A. Hassan, CaO nanoparticles incorporated metal organic framework (NH2-MIL-101) for Knoevenagel condensation reaction, „Arabian Journal of Chemistry”, 15 (2), 2022, s. 103588, DOI10.1016/j.arabjc.2021.103588, ISSN 1878-5352 [dostęp 2022-04-13] (ang.).
  • Dengke Wang, Zhaohui Li, Bi-functional NH2-MIL-101(Fe) for one-pot tandem photo-oxidation/Knoevenagel condensation between aromatic alcohols and active methylene compounds, „Catalysis Science & Technology”, 5 (3), 2015, s. 1623–1628, DOI10.1039/C4CY01464B, ISSN 2044-4753 [dostęp 2022-04-13] (ang.).
  • Qingchun Xia i inni, A Cr(salen)-based metal–organic framework as a versatile catalyst for efficient asymmetric transformations, „Chemical Communications”, 52 (89), 2016, s. 13167–13170, DOI10.1039/C6CC06019F, ISSN 1364-548X [dostęp 2022-04-13] (ang.).
  • Kai Huang, Lin Lin Guo, Dong Fang Wu, Synthesis of Metal Salen@MOFs and Their Catalytic Performance for Styrene Oxidation, „Industrial & Engineering Chemistry Research”, 58 (12), 2019, s. 4744–4754, DOI10.1021/acs.iecr.8b05007, ISSN 0888-5885 [dostęp 2022-04-13].
  • Yan Liu i inni, Chiral Cu(salen)-Based Metal–Organic Framework for Heterogeneously Catalyzed Aziridination and Amination of Olefins, „Inorganic Chemistry”, 55 (24), 2016, s. 12500–12503, DOI10.1021/acs.inorgchem.6b02151, ISSN 0020-1669 [dostęp 2022-04-13].
  • Guozan Yuan i inni, Metallosalen-based crystalline porous materials: Synthesis and property, „Coordination Chemistry Reviews”, 378, Special issue on the 8th Chinese Coordination Chemistry Conference, 2019, s. 483–499, DOI10.1016/j.ccr.2017.10.032, ISSN 0010-8545 [dostęp 2022-04-13] (ang.).
  • Reza Mohammadian, Mostafa M. Amini, Ahmad Shaabani, Thiourea-functionalized MIL-101(Cr) metal-organic framework as a hydrogen-bond-donating heterogeneous organocatalyst for the Friedel-Crafts alkylation and Biginelli reactions, „Catalysis Communications”, 136, 2020, s. 105905, DOI10.1016/j.catcom.2019.105905, ISSN 1566-7367 [dostęp 2022-04-12] (ang.).
  • Artur Chołuj i inni, Metathesis@MOF: Simple and Robust Immobilization of Olefin Metathesis Catalysts inside (Al)MIL-101-NH2, „ACS Catalysis”, 6 (10), 2016, s. 6343–6349, DOI10.1021/acscatal.6b01048 [dostęp 2022-04-11].
  • Artur Chołuj i inni, Preparation of Ruthenium Olefin Metathesis Catalysts Immobilized on MOF, SBA-15, and 13X for Probing Heterogeneous Boomerang Effect, „Catalysts”, 10 (4), 2020, s. 438, DOI10.3390/catal10040438, ISSN 2073-4344 [dostęp 2022-04-12] (ang.).
  • Rong Sun i inni, Palladium(II)@Zirconium-Based Mixed-Linker Metal-Organic Frameworks as Highly Efficient and Recyclable Catalysts for Suzuki and Heck Cross-Coupling Reactions, „ChemCatChem”, 8 (20), 2016, s. 3261–3271, DOI10.1002/cctc.201600774 [dostęp 2022-04-12] (ang.).
  • P.J. Jodłowski i inni, In situ deposition of M(M=Zn; Ni; Co)-MOF-74 over structured carriers for cyclohexene oxidation - Spectroscopic and microscopic characterisation, „Microporous and Mesoporous Materials”, 303, 2020, s. 110249, DOI10.1016/j.micromeso.2020.110249 [dostęp 2024-06-27] (ang.).
  • Anastasiya Bavykina i inni, Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives, „Chemical Reviews”, 120 (16), 2020, s. 8468–8535, DOI10.1021/acs.chemrev.9b00685, ISSN 0009-2665 [dostęp 2022-04-11].
  • Miguel I. Gonzalez i inni, Separation of Xylene Isomers through Multiple Metal Site Interactions in Metal–Organic Frameworks, „Journal of the American Chemical Society”, 140 (9), 2018, s. 3412–3422, DOI10.1021/jacs.7b13825, ISSN 0002-7863, PMID29446932, PMCIDPMC8224533 [dostęp 2022-04-11].
  • Xili Cui i inni, Efficient separation of xylene isomers by a guest-responsive metal–organic framework with rotational anionic sites, „Nature Communications”, 11 (1), 2020, s. 5456, DOI10.1038/s41467-020-19209-7, ISSN 2041-1723, PMID33116126, PMCIDPMC7595167 [dostęp 2022-04-11] (ang.).
  • Mayank Agrawal i inni, Liquid-Phase Multicomponent Adsorption and Separation of Xylene Mixtures by Flexible MIL-53 Adsorbents, „The Journal of Physical Chemistry C”, 122 (1), 2018, s. 386–397, DOI10.1021/acs.jpcc.7b09105, ISSN 1932-7447 [dostęp 2022-04-11].
  • Viral A. Solanki, Bhaskarjyoti Borah, Ranking of Metal–Organic Frameworks (MOFs) for Separation of Hexane Isomers by Selective Adsorption, „Industrial & Engineering Chemistry Research”, 58 (43), 2019, s. 20047–20065, DOI10.1021/acs.iecr.9b03533, ISSN 0888-5885 [dostęp 2022-04-11].
  • Hao Wang i inni, Separation of alkane and alkene mixtures by metal–organic frameworks, „Journal of Materials Chemistry A”, 9 (37), 2021, s. 20874–20896, DOI10.1039/D1TA04096K, ISSN 2050-7496 [dostęp 2022-04-11] (ang.).
  • Yujie Li i inni, Separation of anionic dye mixtures b y Al-metal-organic framework filled polyacrylonitrile-ethanolamine membrane and its modified product, „Journal of Cleaner Production”, 284, 2021, s. 124778, DOI10.1016/j.jclepro.2020.124778, ISSN 0959-6526 [dostęp 2022-04-11] (ang.).
  • Xudong Zhao i inni, Reversing the Dye Adsorption and Separation Performance of Metal–Organic Frameworks via Introduction of −SO3H Groups, „Industrial & Engineering Chemistry Research”, 56 (15), 2017, s. 4496–4501, DOI10.1021/acs.iecr.7b00128, ISSN 0888-5885 [dostęp 2022-04-11].
  • Meipeng Jian i inni, Ultrathin water-stable metal-organic framework membranes for ion separation, „Science Advances”, 6 (23), 2020, eaay3998, DOI10.1126/sciadv.aay3998, ISSN 2375-2548, PMID32548253, PMCIDPMC7274808 [dostęp 2022-04-11] (ang.).
  • Leili Esrafili, Maniya Gharib, Ali Morsali, Selective detection and removal of mercury ions by dual-functionalized metal–organic frameworks: design-for-purpose, „New Journal of Chemistry”, 43 (46), 2019, s. 18079–18091, DOI10.1039/C9NJ03951A, ISSN 1369-9261 [dostęp 2022-04-11] (ang.).

gloswielkopolski.pl

mchmielewski.pl

  • Lider zespołu [online], Laboratorium Chemii Supramolekularnej UW [dostęp 2023-03-07].

ncn.gov.pl

projekty.ncn.gov.pl

nih.gov

ncbi.nlm.nih.gov

oup.com

academic.oup.com

uwb.edu.pl

repozytorium.uwb.edu.pl

worldcat.org

  • Hailian Li i inni, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, „Nature”, 402 (6759), 1999, s. 276–279, DOI10.1038/46248, ISSN 1476-4687 [dostęp 2022-04-11] (ang.).
  • Omar K. Farha i inni, Control over Catenation in Metal−Organic Frameworks via Rational Design of the Organic Building Block, „Journal of the American Chemical Society”, 132 (3), 2010, s. 950–952, DOI10.1021/ja909519e, ISSN 0002-7863 [dostęp 2022-04-13].
  • Shengqian Ma i inni, Further Investigation of the Effect of Framework Catenation on Hydrogen Uptake in Metal−Organic Frameworks, „Journal of the American Chemical Society”, 130 (47), 2008, s. 15896–15902, DOI10.1021/ja803492q, ISSN 0002-7863 [dostęp 2022-04-14] (ang.).
  • Hexiang Deng i inni, Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks, „Science”, 327 (5967), 2010, s. 846–850, DOI10.1126/science.1181761, ISSN 0036-8075 [dostęp 2022-04-11] (ang.).
  • Yang Wang i inni, A Tunable Multivariate Metal–Organic Framework as a Platform for Designing Photocatalysts, „Journal of the American Chemical Society”, 143 (17), 2021, s. 6333–6338, DOI10.1021/jacs.1c01764, ISSN 0002-7863, PMID33900747, PMCIDPMC8297731 [dostęp 2022-04-11].
  • Norbert Stock, Shyam Biswas, Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites, „Chemical Reviews”, 112 (2), 2012, s. 933–969, DOI10.1021/cr200304e, ISSN 0009-2665 [dostęp 2022-04-14] (ang.).
  • Fu-Gui Xi i inni, An in situ approach to functionalize metal–organic frameworks with tertiary aliphatic amino groups, „Chemical Communications”, 56 (86), 2020, s. 13177–13180, DOI10.1039/D0CC05568A, ISSN 1359-7345 [dostęp 2022-04-14] (ang.).
  • Norbert Stock, Shyam Biswas, Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites, „Chemical Reviews”, 112 (2), 2012, s. 933–969, DOI10.1021/cr200304e, ISSN 0009-2665 [dostęp 2022-04-12].
  • Yu-Ri Lee, Jun Kim, Wha-Seung Ahn, Synthesis of metal-organic frameworks: A mini review, „Korean Journal of Chemical Engineering”, 30 (9), 2013, s. 1667–1680, DOI10.1007/s11814-013-0140-6, ISSN 0256-1115 [dostęp 2022-04-12] (ang.).
  • Min Kim i inni, Postsynthetic ligand exchange as a route to functionalization of ‘inert’ metal–organic frameworks, „Chem. Sci.”, 3 (1), 2012, s. 126–130, DOI10.1039/C1SC00394A, ISSN 2041-6520 [dostęp 2022-04-11] (ang.).
  • Florencia A. Son i inni, Solvent-assisted linker exchange enabled preparation of cerium-based metal–organic frameworks constructed from redox active linkers, „Inorganic Chemistry Frontiers”, 7 (4), 2020, s. 984–990, DOI10.1039/C9QI01218D, ISSN 2052-1553 [dostęp 2022-04-12] (ang.).
  • Olga Karagiaridi i inni, Opening Metal–Organic Frameworks Vol. 2: Inserting Longer Pillars into Pillared-Paddlewheel Structures through Solvent-Assisted Linker Exchange, „Chemistry of Materials”, 25 (17), 2013, s. 3499–3503, DOI10.1021/cm401724v, ISSN 0897-4756 [dostęp 2022-04-14].
  • Yasamin Noori, Kamran Akhbari, Post-synthetic ion-exchange process in nanoporous metal–organic frameworks; an effective way for modulating their structures and properties, „RSC Advances”, 7 (4), 2017, s. 1782–1808, DOI10.1039/C6RA24958B, ISSN 2046-2069 [dostęp 2022-04-12] (ang.).
  • Min Kim i inni, Postsynthetic Ligand and Cation Exchange in Robust Metal–Organic Frameworks, „Journal of the American Chemical Society”, 134 (43), 2012, s. 18082–18088, DOI10.1021/ja3079219, ISSN 0002-7863 [dostęp 2022-04-14] (ang.).
  • Pawan Kumar i inni, Metal-organic frameworks: Challenges and opportunities for ion-exchange/sorption applications, „Progress in Materials Science”, 86, 2017, s. 25–74, DOI10.1016/j.pmatsci.2017.01.002, ISSN 0079-6425 [dostęp 2022-04-12] (ang.).
  • Megan C. Wasson i inni, Metal–organic frameworks: A tunable platform to access single-site heterogeneous catalysts, „Applied Catalysis A: General”, 586, 2019, s. 117214, DOI10.1016/j.apcata.2019.117214, ISSN 0926-860X [dostęp 2022-04-12] (ang.).
  • Stephan Bernt i inni, Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid, „Chemical Communications”, 47 (10), 2011, s. 2838–2840, DOI10.1039/C0CC04526H, ISSN 1364-548X [dostęp 2022-04-11] (ang.).
  • Feng-Ming Zhang i inni, Postsynthetic Modification of ZIF-90 for Potential Targeted Codelivery of Two Anticancer Drugs, „ACS Applied Materials & Interfaces”, 9 (32), 2017, s. 27332–27337, DOI10.1021/acsami.7b08451, ISSN 1944-8244 [dostęp 2022-04-14] (ang.).
  • Moones Pourkhosravani i inni, Designing new catalytic nanoreactors for the regioselective epoxidation of geraniol by the post-synthetic immobilization of oxovanadium(IV) complexes on a ZrIV-based metal–organic framework, „Reaction Kinetics, Mechanisms and Catalysis”, 122 (2), 2017, s. 961–981, DOI10.1007/s11144-017-1253-4, ISSN 1878-5190 [dostęp 2022-04-14] (ang.).
  • Andrew D. Burrows, Luke L. Keenan, Conversion of primary amines into secondary amines on a metal–organic framework using a tandem post-synthetic modification, „CrystEngComm”, 14 (12), 2012, s. 4112, DOI10.1039/c2ce25131k, ISSN 1466-8033 [dostęp 2022-04-14] (ang.).
  • Saba Daliran i inni, A Pyridyltriazol Functionalized Zirconium Metal–Organic Framework for Selective and Highly Efficient Adsorption of Palladium, „ACS Applied Materials & Interfaces”, 12 (22), 2020, s. 25221–25232, DOI10.1021/acsami.0c06672, ISSN 1944-8244 [dostęp 2022-04-14] (ang.).
  • Bijian Li i inni, Postsynthetic Modification of an Alkyne-Tagged Zirconium Metal–Organic Framework via a “Click” Reaction, „Inorganic Chemistry”, 54 (11), 2015, s. 5139–5141, DOI10.1021/acs.inorgchem.5b00535, ISSN 0020-1669 [dostęp 2022-04-14] (ang.).
  • Luis Garzón-Tovar i inni, Spray Drying for Making Covalent Chemistry: Postsynthetic Modification of Metal–Organic Frameworks, „Journal of the American Chemical Society”, 139 (2), 2017, s. 897–903, DOI10.1021/jacs.6b11240, ISSN 0002-7863 [dostęp 2022-04-14] (ang.).
  • Alexander U. Czaja, Natalia Trukhan, Ulrich Müller, Industrial applications of metal–organic frameworks, „Chemical Society Reviews”, 38 (5), 2009, s. 1284, DOI10.1039/b804680h, ISSN 0306-0012 [dostęp 2022-04-11] (ang.).
  • Leslie J. Murray, Mircea Dincă, Jeffrey R. Long, Hydrogen storage in metal–organic frameworks, „Chemical Society Reviews”, 38 (5), 2009, s. 1294, DOI10.1039/b802256a, ISSN 0306-0012 [dostęp 2022-04-11] (ang.).
  • Yohanes Pramudya, Jose L. Mendoza-Cortes, Design Principles for High H 2 Storage Using Chelation of Abundant Transition Metals in Covalent Organic Frameworks for 0–700 bar at 298 K, „Journal of the American Chemical Society”, 138 (46), 2016, s. 15204–15213, DOI10.1021/jacs.6b08803, ISSN 0002-7863 [dostęp 2022-04-11] (ang.).
  • Zhijie Chen i inni, Balancing volumetric and gravimetric uptake in highly porous materials for clean energy, „Science”, 368 (6488), 2020, s. 297–303, DOI10.1126/science.aaz8881, ISSN 0036-8075 [dostęp 2022-04-11] (ang.).
  • Alauddin Ahmed i inni, Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks, „Nature Communications”, 10 (1), 2019, s. 1568, DOI10.1038/s41467-019-09365-w, ISSN 2041-1723, PMID30952862, PMCIDPMC6450936 [dostęp 2022-04-11] (ang.).
  • Rui-Biao Lin i inni, Microporous Metal-Organic Framework Materials for Gas Separation, „Chem”, 6 (2), 2020, s. 337–363, DOI10.1016/j.chempr.2019.10.012, ISSN 2451-9294 [dostęp 2022-04-11] (ang.).
  • Debasis Banerjee i inni, Potential of Metal–Organic Frameworks for Separation of Xenon and Krypton, „Accounts of Chemical Research”, 48 (2), 2015, s. 211–219, DOI10.1021/ar5003126, ISSN 0001-4842 [dostęp 2022-04-11].
  • Libo Li i inni, Efficient separation of ethylene from acetylene/ethylene mixtures by a flexible-robust metal–organic framework, „Journal of Materials Chemistry A”, 5 (36), 2017, s. 18984–18988, DOI10.1039/C7TA05598F, ISSN 2050-7496 [dostęp 2022-04-11] (ang.).
  • Huda I. Aljaddua, Mosaed S. Alhumaimess, Hassan M.A. Hassan, CaO nanoparticles incorporated metal organic framework (NH2-MIL-101) for Knoevenagel condensation reaction, „Arabian Journal of Chemistry”, 15 (2), 2022, s. 103588, DOI10.1016/j.arabjc.2021.103588, ISSN 1878-5352 [dostęp 2022-04-13] (ang.).
  • Dengke Wang, Zhaohui Li, Bi-functional NH2-MIL-101(Fe) for one-pot tandem photo-oxidation/Knoevenagel condensation between aromatic alcohols and active methylene compounds, „Catalysis Science & Technology”, 5 (3), 2015, s. 1623–1628, DOI10.1039/C4CY01464B, ISSN 2044-4753 [dostęp 2022-04-13] (ang.).
  • Qingchun Xia i inni, A Cr(salen)-based metal–organic framework as a versatile catalyst for efficient asymmetric transformations, „Chemical Communications”, 52 (89), 2016, s. 13167–13170, DOI10.1039/C6CC06019F, ISSN 1364-548X [dostęp 2022-04-13] (ang.).
  • Kai Huang, Lin Lin Guo, Dong Fang Wu, Synthesis of Metal Salen@MOFs and Their Catalytic Performance for Styrene Oxidation, „Industrial & Engineering Chemistry Research”, 58 (12), 2019, s. 4744–4754, DOI10.1021/acs.iecr.8b05007, ISSN 0888-5885 [dostęp 2022-04-13].
  • Yan Liu i inni, Chiral Cu(salen)-Based Metal–Organic Framework for Heterogeneously Catalyzed Aziridination and Amination of Olefins, „Inorganic Chemistry”, 55 (24), 2016, s. 12500–12503, DOI10.1021/acs.inorgchem.6b02151, ISSN 0020-1669 [dostęp 2022-04-13].
  • Guozan Yuan i inni, Metallosalen-based crystalline porous materials: Synthesis and property, „Coordination Chemistry Reviews”, 378, Special issue on the 8th Chinese Coordination Chemistry Conference, 2019, s. 483–499, DOI10.1016/j.ccr.2017.10.032, ISSN 0010-8545 [dostęp 2022-04-13] (ang.).
  • Reza Mohammadian, Mostafa M. Amini, Ahmad Shaabani, Thiourea-functionalized MIL-101(Cr) metal-organic framework as a hydrogen-bond-donating heterogeneous organocatalyst for the Friedel-Crafts alkylation and Biginelli reactions, „Catalysis Communications”, 136, 2020, s. 105905, DOI10.1016/j.catcom.2019.105905, ISSN 1566-7367 [dostęp 2022-04-12] (ang.).
  • Artur Chołuj i inni, Preparation of Ruthenium Olefin Metathesis Catalysts Immobilized on MOF, SBA-15, and 13X for Probing Heterogeneous Boomerang Effect, „Catalysts”, 10 (4), 2020, s. 438, DOI10.3390/catal10040438, ISSN 2073-4344 [dostęp 2022-04-12] (ang.).
  • Anastasiya Bavykina i inni, Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives, „Chemical Reviews”, 120 (16), 2020, s. 8468–8535, DOI10.1021/acs.chemrev.9b00685, ISSN 0009-2665 [dostęp 2022-04-11].
  • Miguel I. Gonzalez i inni, Separation of Xylene Isomers through Multiple Metal Site Interactions in Metal–Organic Frameworks, „Journal of the American Chemical Society”, 140 (9), 2018, s. 3412–3422, DOI10.1021/jacs.7b13825, ISSN 0002-7863, PMID29446932, PMCIDPMC8224533 [dostęp 2022-04-11].
  • Xili Cui i inni, Efficient separation of xylene isomers by a guest-responsive metal–organic framework with rotational anionic sites, „Nature Communications”, 11 (1), 2020, s. 5456, DOI10.1038/s41467-020-19209-7, ISSN 2041-1723, PMID33116126, PMCIDPMC7595167 [dostęp 2022-04-11] (ang.).
  • Mayank Agrawal i inni, Liquid-Phase Multicomponent Adsorption and Separation of Xylene Mixtures by Flexible MIL-53 Adsorbents, „The Journal of Physical Chemistry C”, 122 (1), 2018, s. 386–397, DOI10.1021/acs.jpcc.7b09105, ISSN 1932-7447 [dostęp 2022-04-11].
  • Viral A. Solanki, Bhaskarjyoti Borah, Ranking of Metal–Organic Frameworks (MOFs) for Separation of Hexane Isomers by Selective Adsorption, „Industrial & Engineering Chemistry Research”, 58 (43), 2019, s. 20047–20065, DOI10.1021/acs.iecr.9b03533, ISSN 0888-5885 [dostęp 2022-04-11].
  • Hao Wang i inni, Separation of alkane and alkene mixtures by metal–organic frameworks, „Journal of Materials Chemistry A”, 9 (37), 2021, s. 20874–20896, DOI10.1039/D1TA04096K, ISSN 2050-7496 [dostęp 2022-04-11] (ang.).
  • Yujie Li i inni, Separation of anionic dye mixtures b y Al-metal-organic framework filled polyacrylonitrile-ethanolamine membrane and its modified product, „Journal of Cleaner Production”, 284, 2021, s. 124778, DOI10.1016/j.jclepro.2020.124778, ISSN 0959-6526 [dostęp 2022-04-11] (ang.).
  • Xudong Zhao i inni, Reversing the Dye Adsorption and Separation Performance of Metal–Organic Frameworks via Introduction of −SO3H Groups, „Industrial & Engineering Chemistry Research”, 56 (15), 2017, s. 4496–4501, DOI10.1021/acs.iecr.7b00128, ISSN 0888-5885 [dostęp 2022-04-11].
  • Meipeng Jian i inni, Ultrathin water-stable metal-organic framework membranes for ion separation, „Science Advances”, 6 (23), 2020, eaay3998, DOI10.1126/sciadv.aay3998, ISSN 2375-2548, PMID32548253, PMCIDPMC7274808 [dostęp 2022-04-11] (ang.).
  • Leili Esrafili, Maniya Gharib, Ali Morsali, Selective detection and removal of mercury ions by dual-functionalized metal–organic frameworks: design-for-purpose, „New Journal of Chemistry”, 43 (46), 2019, s. 18079–18091, DOI10.1039/C9NJ03951A, ISSN 1369-9261 [dostęp 2022-04-11] (ang.).