Omar M.O.M.YaghiOmar M.O.M., Markus J.M.J.KalmutzkiMarkus J.M.J., Christian S.Ch.S.DiercksChristian S.Ch.S., Introduction to Reticular Chemistry: Metal‐Organic Frameworks and Covalent Organic Frameworks, wyd. 1, Wiley, 6 maja 2019, DOI: 10.1002/9783527821099, ISBN 978-3-527-34502-1 [dostęp 2022-04-12](ang.). Brak numerów stron w książce
Przemysław J.P.J.JodłowskiPrzemysław J.P.J. i inni, Silver and copper modified zeolite imidazole frameworks as sustainable methane storage systems, „Journal of Cleaner Production”, 352, 2022, s. 131638, DOI: 10.1016/j.jclepro.2022.131638 [dostęp 2024-06-27](ang.).
Przemysław J.P.J.JodłowskiPrzemysław J.P.J. i inni, Cracking the Chloroquine Conundrum: The Application of Defective UiO-66 Metal–Organic Framework Materials to Prevent the Onset of Heart Defects—In Vivo and In Vitro, „ACS Applied Materials & Interfaces”, 13 (1), 2021, s. 312–323, DOI: 10.1021/acsami.0c21508 [dostęp 2024-06-27](ang.).
LongL.JiaoLongL. i inni, Metal–organic frameworks: Structures and functional applications, „Materials Today”, 27, 2019, s. 43–68, DOI: 10.1016/j.mattod.2018.10.038 [dostęp 2022-04-12](ang.).
HailianH.LiHailianH. i inni, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, „Nature”, 402 (6759), 1999, s. 276–279, DOI: 10.1038/46248, ISSN1476-4687 [dostęp 2022-04-11](ang.).
StefanS.KaskelStefanS. (red.), The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications: Synthesis, Characterization, and Applications, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016, DOI: 10.1002/9783527693078, ISBN 978-3-527-33874-0 [dostęp 2022-04-14](ang.). Brak numerów stron w książce
HexiangH.DengHexiangH. i inni, Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks, „Science”, 327 (5967), 2010, s. 846–850, DOI: 10.1126/science.1181761, ISSN0036-8075 [dostęp 2022-04-11](ang.).
NorbertN.StockNorbertN., ShyamS.BiswasShyamS., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites, „Chemical Reviews”, 112 (2), 2012, s. 933–969, DOI: 10.1021/cr200304e, ISSN0009-2665 [dostęp 2022-04-14](ang.).
Fu-GuiF.G.XiFu-GuiF.G. i inni, An in situ approach to functionalize metal–organic frameworks with tertiary aliphatic amino groups, „Chemical Communications”, 56 (86), 2020, s. 13177–13180, DOI: 10.1039/D0CC05568A, ISSN1359-7345 [dostęp 2022-04-14](ang.).
NorbertN.StockNorbertN., ShyamS.BiswasShyamS., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites, „Chemical Reviews”, 112 (2), 2012, s. 933–969, DOI: 10.1021/cr200304e, ISSN0009-2665 [dostęp 2022-04-12].
Yu-RiY.R.LeeYu-RiY.R., JunJ.KimJunJ., Wha-SeungW.S.AhnWha-SeungW.S., Synthesis of metal-organic frameworks: A mini review, „Korean Journal of Chemical Engineering”, 30 (9), 2013, s. 1667–1680, DOI: 10.1007/s11814-013-0140-6, ISSN0256-1115 [dostęp 2022-04-12](ang.).
MinM.KimMinM. i inni, Postsynthetic ligand exchange as a route to functionalization of ‘inert’ metal–organic frameworks, „Chem. Sci.”, 3 (1), 2012, s. 126–130, DOI: 10.1039/C1SC00394A, ISSN2041-6520 [dostęp 2022-04-11](ang.).
Florencia A.F.A.SonFlorencia A.F.A. i inni, Solvent-assisted linker exchange enabled preparation of cerium-based metal–organic frameworks constructed from redox active linkers, „Inorganic Chemistry Frontiers”, 7 (4), 2020, s. 984–990, DOI: 10.1039/C9QI01218D, ISSN2052-1553 [dostęp 2022-04-12](ang.).
OlgaO.KaragiaridiOlgaO. i inni, Solvent-Assisted Linker Exchange: An Alternative to the De Novo Synthesis of Unattainable Metal-Organic Frameworks, „Angewandte Chemie International Edition”, 53 (18), 2014, s. 4530–4540, DOI: 10.1002/anie.201306923 [dostęp 2022-04-12](ang.).
OlgaO.KaragiaridiOlgaO. i inni, Opening Metal–Organic Frameworks Vol. 2: Inserting Longer Pillars into Pillared-Paddlewheel Structures through Solvent-Assisted Linker Exchange, „Chemistry of Materials”, 25 (17), 2013, s. 3499–3503, DOI: 10.1021/cm401724v, ISSN0897-4756 [dostęp 2022-04-14].
YasaminY.NooriYasaminY., KamranK.AkhbariKamranK., Post-synthetic ion-exchange process in nanoporous metal–organic frameworks; an effective way for modulating their structures and properties, „RSC Advances”, 7 (4), 2017, s. 1782–1808, DOI: 10.1039/C6RA24958B, ISSN2046-2069 [dostęp 2022-04-12](ang.).
PawanP.KumarPawanP. i inni, Metal-organic frameworks: Challenges and opportunities for ion-exchange/sorption applications, „Progress in Materials Science”, 86, 2017, s. 25–74, DOI: 10.1016/j.pmatsci.2017.01.002, ISSN0079-6425 [dostęp 2022-04-12](ang.).
Megan C.M.C.WassonMegan C.M.C. i inni, Metal–organic frameworks: A tunable platform to access single-site heterogeneous catalysts, „Applied Catalysis A: General”, 586, 2019, s. 117214, DOI: 10.1016/j.apcata.2019.117214, ISSN0926-860X [dostęp 2022-04-12](ang.).
StephanS.BerntStephanS. i inni, Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid, „Chemical Communications”, 47 (10), 2011, s. 2838–2840, DOI: 10.1039/C0CC04526H, ISSN1364-548X [dostęp 2022-04-11](ang.).
A.M.A.M.Rasero-AlmansaA.M.A.M. i inni, Design of a Bifunctional Ir-Zr Based Metal-Organic Framework Heterogeneous Catalyst for the N-Alkylation of Amines with Alcohols, „ChemCatChem”, 6 (6), 2014, s. 1794–1800, DOI: 10.1002/cctc.201402101 [dostęp 2022-04-14](ang.).
Feng-MingF.M.ZhangFeng-MingF.M. i inni, Postsynthetic Modification of ZIF-90 for Potential Targeted Codelivery of Two Anticancer Drugs, „ACS Applied Materials & Interfaces”, 9 (32), 2017, s. 27332–27337, DOI: 10.1021/acsami.7b08451, ISSN1944-8244 [dostęp 2022-04-14](ang.).
MoonesM.PourkhosravaniMoonesM. i inni, Designing new catalytic nanoreactors for the regioselective epoxidation of geraniol by the post-synthetic immobilization of oxovanadium(IV) complexes on a ZrIV-based metal–organic framework, „Reaction Kinetics, Mechanisms and Catalysis”, 122 (2), 2017, s. 961–981, DOI: 10.1007/s11144-017-1253-4, ISSN1878-5190 [dostęp 2022-04-14](ang.).
Andrew D.A.D.BurrowsAndrew D.A.D., Luke L.L.L.KeenanLuke L.L.L., Conversion of primary amines into secondary amines on a metal–organic framework using a tandem post-synthetic modification, „CrystEngComm”, 14 (12), 2012, s. 4112, DOI: 10.1039/c2ce25131k, ISSN1466-8033 [dostęp 2022-04-14](ang.).
HeshmatollahH.AlinezhadHeshmatollahH., ShahramS.GhasemiShahramS., MansourehM.CheraghianMansourehM., MOF nano porous-supported C-S cross coupling through one-pot post-synthetic modification, „Journal of Organometallic Chemistry”, 898, 2019, s. 120867, DOI: 10.1016/j.jorganchem.2019.07.018 [dostęp 2022-04-14](ang.).
SabaS.DaliranSabaS. i inni, A Pyridyltriazol Functionalized Zirconium Metal–Organic Framework for Selective and Highly Efficient Adsorption of Palladium, „ACS Applied Materials & Interfaces”, 12 (22), 2020, s. 25221–25232, DOI: 10.1021/acsami.0c06672, ISSN1944-8244 [dostęp 2022-04-14](ang.).
BijianB.LiBijianB. i inni, Postsynthetic Modification of an Alkyne-Tagged Zirconium Metal–Organic Framework via a “Click” Reaction, „Inorganic Chemistry”, 54 (11), 2015, s. 5139–5141, DOI: 10.1021/acs.inorgchem.5b00535, ISSN0020-1669 [dostęp 2022-04-14](ang.).
Alexander U.A.U.CzajaAlexander U.A.U., NataliaN.TrukhanNataliaN., UlrichU.MüllerUlrichU., Industrial applications of metal–organic frameworks, „Chemical Society Reviews”, 38 (5), 2009, s. 1284, DOI: 10.1039/b804680h, ISSN0306-0012 [dostęp 2022-04-11](ang.).
Leslie J.L.J.MurrayLeslie J.L.J., MirceaM.DincăMirceaM., Jeffrey R.J.R.LongJeffrey R.J.R., Hydrogen storage in metal–organic frameworks, „Chemical Society Reviews”, 38 (5), 2009, s. 1294, DOI: 10.1039/b802256a, ISSN0306-0012 [dostęp 2022-04-11](ang.).
YohanesY.PramudyaYohanesY., Jose L.J.L.Mendoza-CortesJose L.J.L., Design Principles for High H 2 Storage Using Chelation of Abundant Transition Metals in Covalent Organic Frameworks for 0–700 bar at 298 K, „Journal of the American Chemical Society”, 138 (46), 2016, s. 15204–15213, DOI: 10.1021/jacs.6b08803, ISSN0002-7863 [dostęp 2022-04-11](ang.).
Omar M.O.M.YaghiOmar M.O.M., Markus J.M.J.KalmutzkiMarkus J.M.J., Christian S.Ch.S.DiercksChristian S.Ch.S., Introduction to Reticular Chemistry: Metal‐Organic Frameworks and Covalent Organic Frameworks, wyd. 1, Wiley, 6 maja 2019, DOI: 10.1002/9783527821099.ch15, ISBN 978-3-527-34502-1 [dostęp 2022-04-11](ang.). Brak numerów stron w książce
ZhijieZ.ChenZhijieZ. i inni, Balancing volumetric and gravimetric uptake in highly porous materials for clean energy, „Science”, 368 (6488), 2020, s. 297–303, DOI: 10.1126/science.aaz8881, ISSN0036-8075 [dostęp 2022-04-11](ang.).
AlauddinA.AhmedAlauddinA. i inni, Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks, „Nature Communications”, 10 (1), 2019, s. 1568, DOI: 10.1038/s41467-019-09365-w, ISSN2041-1723, PMID: 30952862, PMCID: PMC6450936 [dostęp 2022-04-11](ang.).
Rui-BiaoR.B.LinRui-BiaoR.B. i inni, Microporous Metal-Organic Framework Materials for Gas Separation, „Chem”, 6 (2), 2020, s. 337–363, DOI: 10.1016/j.chempr.2019.10.012, ISSN2451-9294 [dostęp 2022-04-11](ang.).
DebasisD.BanerjeeDebasisD. i inni, Potential of Metal–Organic Frameworks for Separation of Xenon and Krypton, „Accounts of Chemical Research”, 48 (2), 2015, s. 211–219, DOI: 10.1021/ar5003126, ISSN0001-4842 [dostęp 2022-04-11].
LiboL.LiLiboL. i inni, Efficient separation of ethylene from acetylene/ethylene mixtures by a flexible-robust metal–organic framework, „Journal of Materials Chemistry A”, 5 (36), 2017, s. 18984–18988, DOI: 10.1039/C7TA05598F, ISSN2050-7496 [dostęp 2022-04-11](ang.).
Huda I.H.I.AljadduaHuda I.H.I., Mosaed S.M.S.AlhumaimessMosaed S.M.S., Hassan M.A.H.M.A.HassanHassan M.A.H.M.A., CaO nanoparticles incorporated metal organic framework (NH2-MIL-101) for Knoevenagel condensation reaction, „Arabian Journal of Chemistry”, 15 (2), 2022, s. 103588, DOI: 10.1016/j.arabjc.2021.103588, ISSN1878-5352 [dostęp 2022-04-13](ang.).
DengkeD.WangDengkeD., ZhaohuiZ.LiZhaohuiZ., Bi-functional NH2-MIL-101(Fe) for one-pot tandem photo-oxidation/Knoevenagel condensation between aromatic alcohols and active methylene compounds, „Catalysis Science & Technology”, 5 (3), 2015, s. 1623–1628, DOI: 10.1039/C4CY01464B, ISSN2044-4753 [dostęp 2022-04-13](ang.).
QingchunQ.XiaQingchunQ. i inni, A Cr(salen)-based metal–organic framework as a versatile catalyst for efficient asymmetric transformations, „Chemical Communications”, 52 (89), 2016, s. 13167–13170, DOI: 10.1039/C6CC06019F, ISSN1364-548X [dostęp 2022-04-13](ang.).
KaiK.HuangKaiK., Lin LinL.L.GuoLin LinL.L., Dong FangD.F.WuDong FangD.F., Synthesis of Metal Salen@MOFs and Their Catalytic Performance for Styrene Oxidation, „Industrial & Engineering Chemistry Research”, 58 (12), 2019, s. 4744–4754, DOI: 10.1021/acs.iecr.8b05007, ISSN0888-5885 [dostęp 2022-04-13].
YanY.LiuYanY. i inni, Chiral Cu(salen)-Based Metal–Organic Framework for Heterogeneously Catalyzed Aziridination and Amination of Olefins, „Inorganic Chemistry”, 55 (24), 2016, s. 12500–12503, DOI: 10.1021/acs.inorgchem.6b02151, ISSN0020-1669 [dostęp 2022-04-13].
GuozanG.YuanGuozanG. i inni, Metallosalen-based crystalline porous materials: Synthesis and property, „Coordination Chemistry Reviews”, 378, Special issue on the 8th Chinese Coordination Chemistry Conference, 2019, s. 483–499, DOI: 10.1016/j.ccr.2017.10.032, ISSN0010-8545 [dostęp 2022-04-13](ang.).
RezaR.MohammadianRezaR., Mostafa M.M.M.AminiMostafa M.M.M., AhmadA.ShaabaniAhmadA., Thiourea-functionalized MIL-101(Cr) metal-organic framework as a hydrogen-bond-donating heterogeneous organocatalyst for the Friedel-Crafts alkylation and Biginelli reactions, „Catalysis Communications”, 136, 2020, s. 105905, DOI: 10.1016/j.catcom.2019.105905, ISSN1566-7367 [dostęp 2022-04-12](ang.).
ArturA.ChołujArturA. i inni, Metathesis@MOF: Simple and Robust Immobilization of Olefin Metathesis Catalysts inside (Al)MIL-101-NH2, „ACS Catalysis”, 6 (10), 2016, s. 6343–6349, DOI: 10.1021/acscatal.6b01048 [dostęp 2022-04-11].
ArturA.ChołujArturA. i inni, Preparation of Ruthenium Olefin Metathesis Catalysts Immobilized on MOF, SBA-15, and 13X for Probing Heterogeneous Boomerang Effect, „Catalysts”, 10 (4), 2020, s. 438, DOI: 10.3390/catal10040438, ISSN2073-4344 [dostęp 2022-04-12](ang.).
RongR.SunRongR. i inni, Palladium(II)@Zirconium-Based Mixed-Linker Metal-Organic Frameworks as Highly Efficient and Recyclable Catalysts for Suzuki and Heck Cross-Coupling Reactions, „ChemCatChem”, 8 (20), 2016, s. 3261–3271, DOI: 10.1002/cctc.201600774 [dostęp 2022-04-12](ang.).
P.J.P.J.JodłowskiP.J.P.J. i inni, In situ deposition of M(M=Zn; Ni; Co)-MOF-74 over structured carriers for cyclohexene oxidation - Spectroscopic and microscopic characterisation, „Microporous and Mesoporous Materials”, 303, 2020, s. 110249, DOI: 10.1016/j.micromeso.2020.110249 [dostęp 2024-06-27](ang.).
AnastasiyaA.BavykinaAnastasiyaA. i inni, Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives, „Chemical Reviews”, 120 (16), 2020, s. 8468–8535, DOI: 10.1021/acs.chemrev.9b00685, ISSN0009-2665 [dostęp 2022-04-11].
XiliX.CuiXiliX. i inni, Efficient separation of xylene isomers by a guest-responsive metal–organic framework with rotational anionic sites, „Nature Communications”, 11 (1), 2020, s. 5456, DOI: 10.1038/s41467-020-19209-7, ISSN2041-1723, PMID: 33116126, PMCID: PMC7595167 [dostęp 2022-04-11](ang.).
MayankM.AgrawalMayankM. i inni, Liquid-Phase Multicomponent Adsorption and Separation of Xylene Mixtures by Flexible MIL-53 Adsorbents, „The Journal of Physical Chemistry C”, 122 (1), 2018, s. 386–397, DOI: 10.1021/acs.jpcc.7b09105, ISSN1932-7447 [dostęp 2022-04-11].
Viral A.V.A.SolankiViral A.V.A., BhaskarjyotiB.BorahBhaskarjyotiB., Ranking of Metal–Organic Frameworks (MOFs) for Separation of Hexane Isomers by Selective Adsorption, „Industrial & Engineering Chemistry Research”, 58 (43), 2019, s. 20047–20065, DOI: 10.1021/acs.iecr.9b03533, ISSN0888-5885 [dostęp 2022-04-11].
HaoH.WangHaoH. i inni, Separation of alkane and alkene mixtures by metal–organic frameworks, „Journal of Materials Chemistry A”, 9 (37), 2021, s. 20874–20896, DOI: 10.1039/D1TA04096K, ISSN2050-7496 [dostęp 2022-04-11](ang.).
YujieY.LiYujieY. i inni, Separation of anionic dye mixtures b y Al-metal-organic framework filled polyacrylonitrile-ethanolamine membrane and its modified product, „Journal of Cleaner Production”, 284, 2021, s. 124778, DOI: 10.1016/j.jclepro.2020.124778, ISSN0959-6526 [dostęp 2022-04-11](ang.).
XudongX.ZhaoXudongX. i inni, Reversing the Dye Adsorption and Separation Performance of Metal–Organic Frameworks via Introduction of −SO3H Groups, „Industrial & Engineering Chemistry Research”, 56 (15), 2017, s. 4496–4501, DOI: 10.1021/acs.iecr.7b00128, ISSN0888-5885 [dostęp 2022-04-11].
HailianH.LiHailianH. i inni, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, „Nature”, 402 (6759), 1999, s. 276–279, DOI: 10.1038/46248, ISSN1476-4687 [dostęp 2022-04-11](ang.).
HexiangH.DengHexiangH. i inni, Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks, „Science”, 327 (5967), 2010, s. 846–850, DOI: 10.1126/science.1181761, ISSN0036-8075 [dostęp 2022-04-11](ang.).
NorbertN.StockNorbertN., ShyamS.BiswasShyamS., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites, „Chemical Reviews”, 112 (2), 2012, s. 933–969, DOI: 10.1021/cr200304e, ISSN0009-2665 [dostęp 2022-04-14](ang.).
Fu-GuiF.G.XiFu-GuiF.G. i inni, An in situ approach to functionalize metal–organic frameworks with tertiary aliphatic amino groups, „Chemical Communications”, 56 (86), 2020, s. 13177–13180, DOI: 10.1039/D0CC05568A, ISSN1359-7345 [dostęp 2022-04-14](ang.).
NorbertN.StockNorbertN., ShyamS.BiswasShyamS., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites, „Chemical Reviews”, 112 (2), 2012, s. 933–969, DOI: 10.1021/cr200304e, ISSN0009-2665 [dostęp 2022-04-12].
Yu-RiY.R.LeeYu-RiY.R., JunJ.KimJunJ., Wha-SeungW.S.AhnWha-SeungW.S., Synthesis of metal-organic frameworks: A mini review, „Korean Journal of Chemical Engineering”, 30 (9), 2013, s. 1667–1680, DOI: 10.1007/s11814-013-0140-6, ISSN0256-1115 [dostęp 2022-04-12](ang.).
MinM.KimMinM. i inni, Postsynthetic ligand exchange as a route to functionalization of ‘inert’ metal–organic frameworks, „Chem. Sci.”, 3 (1), 2012, s. 126–130, DOI: 10.1039/C1SC00394A, ISSN2041-6520 [dostęp 2022-04-11](ang.).
Florencia A.F.A.SonFlorencia A.F.A. i inni, Solvent-assisted linker exchange enabled preparation of cerium-based metal–organic frameworks constructed from redox active linkers, „Inorganic Chemistry Frontiers”, 7 (4), 2020, s. 984–990, DOI: 10.1039/C9QI01218D, ISSN2052-1553 [dostęp 2022-04-12](ang.).
OlgaO.KaragiaridiOlgaO. i inni, Opening Metal–Organic Frameworks Vol. 2: Inserting Longer Pillars into Pillared-Paddlewheel Structures through Solvent-Assisted Linker Exchange, „Chemistry of Materials”, 25 (17), 2013, s. 3499–3503, DOI: 10.1021/cm401724v, ISSN0897-4756 [dostęp 2022-04-14].
YasaminY.NooriYasaminY., KamranK.AkhbariKamranK., Post-synthetic ion-exchange process in nanoporous metal–organic frameworks; an effective way for modulating their structures and properties, „RSC Advances”, 7 (4), 2017, s. 1782–1808, DOI: 10.1039/C6RA24958B, ISSN2046-2069 [dostęp 2022-04-12](ang.).
PawanP.KumarPawanP. i inni, Metal-organic frameworks: Challenges and opportunities for ion-exchange/sorption applications, „Progress in Materials Science”, 86, 2017, s. 25–74, DOI: 10.1016/j.pmatsci.2017.01.002, ISSN0079-6425 [dostęp 2022-04-12](ang.).
Megan C.M.C.WassonMegan C.M.C. i inni, Metal–organic frameworks: A tunable platform to access single-site heterogeneous catalysts, „Applied Catalysis A: General”, 586, 2019, s. 117214, DOI: 10.1016/j.apcata.2019.117214, ISSN0926-860X [dostęp 2022-04-12](ang.).
StephanS.BerntStephanS. i inni, Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid, „Chemical Communications”, 47 (10), 2011, s. 2838–2840, DOI: 10.1039/C0CC04526H, ISSN1364-548X [dostęp 2022-04-11](ang.).
Feng-MingF.M.ZhangFeng-MingF.M. i inni, Postsynthetic Modification of ZIF-90 for Potential Targeted Codelivery of Two Anticancer Drugs, „ACS Applied Materials & Interfaces”, 9 (32), 2017, s. 27332–27337, DOI: 10.1021/acsami.7b08451, ISSN1944-8244 [dostęp 2022-04-14](ang.).
MoonesM.PourkhosravaniMoonesM. i inni, Designing new catalytic nanoreactors for the regioselective epoxidation of geraniol by the post-synthetic immobilization of oxovanadium(IV) complexes on a ZrIV-based metal–organic framework, „Reaction Kinetics, Mechanisms and Catalysis”, 122 (2), 2017, s. 961–981, DOI: 10.1007/s11144-017-1253-4, ISSN1878-5190 [dostęp 2022-04-14](ang.).
Andrew D.A.D.BurrowsAndrew D.A.D., Luke L.L.L.KeenanLuke L.L.L., Conversion of primary amines into secondary amines on a metal–organic framework using a tandem post-synthetic modification, „CrystEngComm”, 14 (12), 2012, s. 4112, DOI: 10.1039/c2ce25131k, ISSN1466-8033 [dostęp 2022-04-14](ang.).
SabaS.DaliranSabaS. i inni, A Pyridyltriazol Functionalized Zirconium Metal–Organic Framework for Selective and Highly Efficient Adsorption of Palladium, „ACS Applied Materials & Interfaces”, 12 (22), 2020, s. 25221–25232, DOI: 10.1021/acsami.0c06672, ISSN1944-8244 [dostęp 2022-04-14](ang.).
BijianB.LiBijianB. i inni, Postsynthetic Modification of an Alkyne-Tagged Zirconium Metal–Organic Framework via a “Click” Reaction, „Inorganic Chemistry”, 54 (11), 2015, s. 5139–5141, DOI: 10.1021/acs.inorgchem.5b00535, ISSN0020-1669 [dostęp 2022-04-14](ang.).
Alexander U.A.U.CzajaAlexander U.A.U., NataliaN.TrukhanNataliaN., UlrichU.MüllerUlrichU., Industrial applications of metal–organic frameworks, „Chemical Society Reviews”, 38 (5), 2009, s. 1284, DOI: 10.1039/b804680h, ISSN0306-0012 [dostęp 2022-04-11](ang.).
Leslie J.L.J.MurrayLeslie J.L.J., MirceaM.DincăMirceaM., Jeffrey R.J.R.LongJeffrey R.J.R., Hydrogen storage in metal–organic frameworks, „Chemical Society Reviews”, 38 (5), 2009, s. 1294, DOI: 10.1039/b802256a, ISSN0306-0012 [dostęp 2022-04-11](ang.).
YohanesY.PramudyaYohanesY., Jose L.J.L.Mendoza-CortesJose L.J.L., Design Principles for High H 2 Storage Using Chelation of Abundant Transition Metals in Covalent Organic Frameworks for 0–700 bar at 298 K, „Journal of the American Chemical Society”, 138 (46), 2016, s. 15204–15213, DOI: 10.1021/jacs.6b08803, ISSN0002-7863 [dostęp 2022-04-11](ang.).
ZhijieZ.ChenZhijieZ. i inni, Balancing volumetric and gravimetric uptake in highly porous materials for clean energy, „Science”, 368 (6488), 2020, s. 297–303, DOI: 10.1126/science.aaz8881, ISSN0036-8075 [dostęp 2022-04-11](ang.).
AlauddinA.AhmedAlauddinA. i inni, Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks, „Nature Communications”, 10 (1), 2019, s. 1568, DOI: 10.1038/s41467-019-09365-w, ISSN2041-1723, PMID: 30952862, PMCID: PMC6450936 [dostęp 2022-04-11](ang.).
Rui-BiaoR.B.LinRui-BiaoR.B. i inni, Microporous Metal-Organic Framework Materials for Gas Separation, „Chem”, 6 (2), 2020, s. 337–363, DOI: 10.1016/j.chempr.2019.10.012, ISSN2451-9294 [dostęp 2022-04-11](ang.).
DebasisD.BanerjeeDebasisD. i inni, Potential of Metal–Organic Frameworks for Separation of Xenon and Krypton, „Accounts of Chemical Research”, 48 (2), 2015, s. 211–219, DOI: 10.1021/ar5003126, ISSN0001-4842 [dostęp 2022-04-11].
LiboL.LiLiboL. i inni, Efficient separation of ethylene from acetylene/ethylene mixtures by a flexible-robust metal–organic framework, „Journal of Materials Chemistry A”, 5 (36), 2017, s. 18984–18988, DOI: 10.1039/C7TA05598F, ISSN2050-7496 [dostęp 2022-04-11](ang.).
Huda I.H.I.AljadduaHuda I.H.I., Mosaed S.M.S.AlhumaimessMosaed S.M.S., Hassan M.A.H.M.A.HassanHassan M.A.H.M.A., CaO nanoparticles incorporated metal organic framework (NH2-MIL-101) for Knoevenagel condensation reaction, „Arabian Journal of Chemistry”, 15 (2), 2022, s. 103588, DOI: 10.1016/j.arabjc.2021.103588, ISSN1878-5352 [dostęp 2022-04-13](ang.).
DengkeD.WangDengkeD., ZhaohuiZ.LiZhaohuiZ., Bi-functional NH2-MIL-101(Fe) for one-pot tandem photo-oxidation/Knoevenagel condensation between aromatic alcohols and active methylene compounds, „Catalysis Science & Technology”, 5 (3), 2015, s. 1623–1628, DOI: 10.1039/C4CY01464B, ISSN2044-4753 [dostęp 2022-04-13](ang.).
QingchunQ.XiaQingchunQ. i inni, A Cr(salen)-based metal–organic framework as a versatile catalyst for efficient asymmetric transformations, „Chemical Communications”, 52 (89), 2016, s. 13167–13170, DOI: 10.1039/C6CC06019F, ISSN1364-548X [dostęp 2022-04-13](ang.).
KaiK.HuangKaiK., Lin LinL.L.GuoLin LinL.L., Dong FangD.F.WuDong FangD.F., Synthesis of Metal Salen@MOFs and Their Catalytic Performance for Styrene Oxidation, „Industrial & Engineering Chemistry Research”, 58 (12), 2019, s. 4744–4754, DOI: 10.1021/acs.iecr.8b05007, ISSN0888-5885 [dostęp 2022-04-13].
YanY.LiuYanY. i inni, Chiral Cu(salen)-Based Metal–Organic Framework for Heterogeneously Catalyzed Aziridination and Amination of Olefins, „Inorganic Chemistry”, 55 (24), 2016, s. 12500–12503, DOI: 10.1021/acs.inorgchem.6b02151, ISSN0020-1669 [dostęp 2022-04-13].
GuozanG.YuanGuozanG. i inni, Metallosalen-based crystalline porous materials: Synthesis and property, „Coordination Chemistry Reviews”, 378, Special issue on the 8th Chinese Coordination Chemistry Conference, 2019, s. 483–499, DOI: 10.1016/j.ccr.2017.10.032, ISSN0010-8545 [dostęp 2022-04-13](ang.).
RezaR.MohammadianRezaR., Mostafa M.M.M.AminiMostafa M.M.M., AhmadA.ShaabaniAhmadA., Thiourea-functionalized MIL-101(Cr) metal-organic framework as a hydrogen-bond-donating heterogeneous organocatalyst for the Friedel-Crafts alkylation and Biginelli reactions, „Catalysis Communications”, 136, 2020, s. 105905, DOI: 10.1016/j.catcom.2019.105905, ISSN1566-7367 [dostęp 2022-04-12](ang.).
ArturA.ChołujArturA. i inni, Preparation of Ruthenium Olefin Metathesis Catalysts Immobilized on MOF, SBA-15, and 13X for Probing Heterogeneous Boomerang Effect, „Catalysts”, 10 (4), 2020, s. 438, DOI: 10.3390/catal10040438, ISSN2073-4344 [dostęp 2022-04-12](ang.).
AnastasiyaA.BavykinaAnastasiyaA. i inni, Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives, „Chemical Reviews”, 120 (16), 2020, s. 8468–8535, DOI: 10.1021/acs.chemrev.9b00685, ISSN0009-2665 [dostęp 2022-04-11].
XiliX.CuiXiliX. i inni, Efficient separation of xylene isomers by a guest-responsive metal–organic framework with rotational anionic sites, „Nature Communications”, 11 (1), 2020, s. 5456, DOI: 10.1038/s41467-020-19209-7, ISSN2041-1723, PMID: 33116126, PMCID: PMC7595167 [dostęp 2022-04-11](ang.).
MayankM.AgrawalMayankM. i inni, Liquid-Phase Multicomponent Adsorption and Separation of Xylene Mixtures by Flexible MIL-53 Adsorbents, „The Journal of Physical Chemistry C”, 122 (1), 2018, s. 386–397, DOI: 10.1021/acs.jpcc.7b09105, ISSN1932-7447 [dostęp 2022-04-11].
Viral A.V.A.SolankiViral A.V.A., BhaskarjyotiB.BorahBhaskarjyotiB., Ranking of Metal–Organic Frameworks (MOFs) for Separation of Hexane Isomers by Selective Adsorption, „Industrial & Engineering Chemistry Research”, 58 (43), 2019, s. 20047–20065, DOI: 10.1021/acs.iecr.9b03533, ISSN0888-5885 [dostęp 2022-04-11].
HaoH.WangHaoH. i inni, Separation of alkane and alkene mixtures by metal–organic frameworks, „Journal of Materials Chemistry A”, 9 (37), 2021, s. 20874–20896, DOI: 10.1039/D1TA04096K, ISSN2050-7496 [dostęp 2022-04-11](ang.).
YujieY.LiYujieY. i inni, Separation of anionic dye mixtures b y Al-metal-organic framework filled polyacrylonitrile-ethanolamine membrane and its modified product, „Journal of Cleaner Production”, 284, 2021, s. 124778, DOI: 10.1016/j.jclepro.2020.124778, ISSN0959-6526 [dostęp 2022-04-11](ang.).
XudongX.ZhaoXudongX. i inni, Reversing the Dye Adsorption and Separation Performance of Metal–Organic Frameworks via Introduction of −SO3H Groups, „Industrial & Engineering Chemistry Research”, 56 (15), 2017, s. 4496–4501, DOI: 10.1021/acs.iecr.7b00128, ISSN0888-5885 [dostęp 2022-04-11].