S Altuvia, Kornitzer, D, Teff, D, Oppenheim, AB. Alternative mRNA structures of the cIII gene of bacteriophage lambda determine the rate of its translation initiation. „Journal of Molecular Biology”. 210 (2), s. 265–80, 1989-11-20. DOI: 10.1016/0022-2836(89)90329-X. PMID: 2532257. (ang.).
S Altuvia, Kornitzer, D, Kobi, S, Oppenheim, AB. Functional and structural elements of the mRNA of the cIII gene of bacteriophage lambda. „Journal of Molecular Biology”. 218 (4), s. 723–33, 1991-04-20. DOI: 10.1016/0022-2836(91)90261-4. PMID: 1827163. (ang.).
MT Morita, Tanaka, Y, Kodama, TS, Kyogoku, Y, Yanagi, H, Yura, T. Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor. „Genes & Development”. 13 (6), s. 655–65, 1999-03-15. DOI: 10.1101/gad.13.6.655. PMID: 10090722. (ang.).
T Waldminghaus, Gaubig, LC, Narberhaus, F. Genome-wide bioinformatic prediction and experimental evaluation of potential RNA thermometers. „Molecular genetics and genomics : MGG”. 278 (5), s. 555–64, Nov 2007. DOI: 10.1007/s00438-007-0272-7. PMID: 17647020. (ang.).
Waldminghaus T, Fippinger A, Alfsmann J, Narberhaus F. RNA thermometers are common in alpha- and gamma-proteobacteria. „Biol. Chem.”. 386 (12), s. 1279–86, 2005-12. DOI: 10.1515/BC.2005.145. PMID: 16336122. (ang.).
F Narberhaus. Translational control of bacterial heat shock and virulence genes by temperature-sensing mRNAs.. „RNA biology”. 7 (1), s. 84–9, Jan–Feb 2010. DOI: 10.4161/rna.7.1.10501. PMID: 20009504. (ang.).
S Chowdhury, Maris, C, Allain, FH, Narberhaus, F. Molecular basis for temperature sensing by an RNA thermometer. „The EMBO Journal”. 25 (11), s. 2487–97, 2006-06-07. DOI: 10.1038/sj.emboj.7601128. PMID: 16710302. (ang.).
Giuliodori AM, Marzi S, Benoit Masquida i inni. The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA. „Mol. Cell”. 37 (1), s. 21–33, 2010-01. DOI: 10.1016/j.molcel.2009.11.033. PMID: 20129052. (ang.).
J Neupert, Karcher, D, Bock, R. Design of simple synthetic RNA thermometers for temperature-controlled gene expression in Escherichia coli. „Nucleic Acids Research”. 36 (19), s. e124, 2008-11. DOI: 10.1093/nar/gkn545. PMID: 18753148. (ang.).
Nikolova EN, Al-Hashimi HM. Thermodynamics of RNA melting, one base pair at a time. „RNA”. 16 (9), s. 1687–91, September 2010. DOI: 10.1261/rna.2235010. PMID: 20660079. (ang.).
J Rinnenthal, Klinkert, B, Narberhaus, F, Schwalbe, H. Modulation of the stability of the Salmonella fourU-type RNA thermometer. „Nucleic Acids Research”. 39 (18), s. 8258–70, 2011-07-04. DOI: 10.1093/nar/gkr314. PMID: 21727085. (ang.).
Mega R, Manzoku M, Shinkai A, Nakagawa N, Kuramitsu S, Masui R. Very rapid induction of a cold shock protein by temperature downshift in Thermus thermophilus. „Biochem. Biophys. Res. Commun.”. 399 (3), s. 336–40, August 2010. DOI: 10.1016/j.bbrc.2010.07.065. PMID: 20655297. (ang.).
A Serganov, Patel, DJ. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. „Nature reviews. Genetics”. 8 (10), s. 776–90, 10-2007. DOI: 10.1038/nrg2172. PMID: 17846637. (ang.).
SE Bocobza, Aharoni, A. Switching the light on plant riboswitches. „Trends in Plant Science”. 13 (10), s. 526–33, Oct 2008. DOI: 10.1016/j.tplants.2008.07.004. PMID: 18778966. (ang.).
LC Gaubig, Waldminghaus, T, Narberhaus, F. Multiple layers of control govern expression of the Escherichia coli ibpAB heat-shock operon. „Microbiology (Reading, England)”. 157 (Pt 1), s. 66–76, Jan 2011. DOI: 10.1099/mic.0.043802-0. PMID: 20864473. (ang.).
S Balsiger, Ragaz C, Baron C, Narberhaus F. Replicon-specific regulation of small heat shock genes in Agrobacterium tumefaciens. „J Bacteriol”. 186 (20), s. 6824–6829, 2004. DOI: 10.1128/JB.186.20.6824-6829.2004. PMID: 15466035. (ang.).
S Altuvia, Kornitzer, D, Teff, D, Oppenheim, AB. Alternative mRNA structures of the cIII gene of bacteriophage lambda determine the rate of its translation initiation. „Journal of Molecular Biology”. 210 (2), s. 265–80, 1989-11-20. DOI: 10.1016/0022-2836(89)90329-X. PMID: 2532257. (ang.).
S Altuvia, Oppenheim, AB. Translational regulatory signals within the coding region of the bacteriophage lambda cIII gene. „Journal of bacteriology”. 167 (1), s. 415–9, Jul 1986. PMID: 2941413. (ang.).
S Altuvia, Kornitzer, D, Kobi, S, Oppenheim, AB. Functional and structural elements of the mRNA of the cIII gene of bacteriophage lambda. „Journal of Molecular Biology”. 218 (4), s. 723–33, 1991-04-20. DOI: 10.1016/0022-2836(91)90261-4. PMID: 1827163. (ang.).
MT Morita, Tanaka, Y, Kodama, TS, Kyogoku, Y, Yanagi, H, Yura, T. Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor. „Genes & Development”. 13 (6), s. 655–65, 1999-03-15. DOI: 10.1101/gad.13.6.655. PMID: 10090722. (ang.).
T Waldminghaus, Gaubig, LC, Narberhaus, F. Genome-wide bioinformatic prediction and experimental evaluation of potential RNA thermometers. „Molecular genetics and genomics : MGG”. 278 (5), s. 555–64, Nov 2007. DOI: 10.1007/s00438-007-0272-7. PMID: 17647020. (ang.).
Waldminghaus T, Fippinger A, Alfsmann J, Narberhaus F. RNA thermometers are common in alpha- and gamma-proteobacteria. „Biol. Chem.”. 386 (12), s. 1279–86, 2005-12. DOI: 10.1515/BC.2005.145. PMID: 16336122. (ang.).
F Narberhaus. Translational control of bacterial heat shock and virulence genes by temperature-sensing mRNAs.. „RNA biology”. 7 (1), s. 84–9, Jan–Feb 2010. DOI: 10.4161/rna.7.1.10501. PMID: 20009504. (ang.).
S Chowdhury, Maris, C, Allain, FH, Narberhaus, F. Molecular basis for temperature sensing by an RNA thermometer. „The EMBO Journal”. 25 (11), s. 2487–97, 2006-06-07. DOI: 10.1038/sj.emboj.7601128. PMID: 16710302. (ang.).
Giuliodori AM, Marzi S, Benoit Masquida i inni. The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA. „Mol. Cell”. 37 (1), s. 21–33, 2010-01. DOI: 10.1016/j.molcel.2009.11.033. PMID: 20129052. (ang.).
J Neupert, Karcher, D, Bock, R. Design of simple synthetic RNA thermometers for temperature-controlled gene expression in Escherichia coli. „Nucleic Acids Research”. 36 (19), s. e124, 2008-11. DOI: 10.1093/nar/gkn545. PMID: 18753148. (ang.).
Nikolova EN, Al-Hashimi HM. Thermodynamics of RNA melting, one base pair at a time. „RNA”. 16 (9), s. 1687–91, September 2010. DOI: 10.1261/rna.2235010. PMID: 20660079. (ang.).
J Rinnenthal, Klinkert, B, Narberhaus, F, Schwalbe, H. Modulation of the stability of the Salmonella fourU-type RNA thermometer. „Nucleic Acids Research”. 39 (18), s. 8258–70, 2011-07-04. DOI: 10.1093/nar/gkr314. PMID: 21727085. (ang.).
Mega R, Manzoku M, Shinkai A, Nakagawa N, Kuramitsu S, Masui R. Very rapid induction of a cold shock protein by temperature downshift in Thermus thermophilus. „Biochem. Biophys. Res. Commun.”. 399 (3), s. 336–40, August 2010. DOI: 10.1016/j.bbrc.2010.07.065. PMID: 20655297. (ang.).
A Serganov, Patel, DJ. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. „Nature reviews. Genetics”. 8 (10), s. 776–90, 10-2007. DOI: 10.1038/nrg2172. PMID: 17846637. (ang.).
SE Bocobza, Aharoni, A. Switching the light on plant riboswitches. „Trends in Plant Science”. 13 (10), s. 526–33, Oct 2008. DOI: 10.1016/j.tplants.2008.07.004. PMID: 18778966. (ang.).
LC Gaubig, Waldminghaus, T, Narberhaus, F. Multiple layers of control govern expression of the Escherichia coli ibpAB heat-shock operon. „Microbiology (Reading, England)”. 157 (Pt 1), s. 66–76, Jan 2011. DOI: 10.1099/mic.0.043802-0. PMID: 20864473. (ang.).
S Balsiger, Ragaz C, Baron C, Narberhaus F. Replicon-specific regulation of small heat shock genes in Agrobacterium tumefaciens. „J Bacteriol”. 186 (20), s. 6824–6829, 2004. DOI: 10.1128/JB.186.20.6824-6829.2004. PMID: 15466035. (ang.).