L. Dall’Osto, A. Fiore, S. Cazzaniga, G. Giuliano i inni. Different roles of alpha- and beta-branch xanthophylls in photosystem assembly and photoprotection. „J Biol Chem”. 282 (48), s. 35056–35068, Nov 2007. DOI: 10.1074/jbc.M704729200. PMID: 17913714.
C. Wilhelm, I. Lenarz-Weiler. Energy transfer and pigment composition in three chlorophyll b-containing light-harvesting complexes isolated from Mantoniella squamata (Prasinophyceae), Chlorella fusca (Chlorophyceae) and Sinapis alba. „Photosynth Res”. 13 (2), s. 101–111, Jan 1987. DOI: 10.1007/BF00035234. PMID: 24435780.
P. Jahns, D. Latowski, K. Strzalka. Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. „Biochim Biophys Acta”. 1787 (1), s. 3–14, Jan 2009. DOI: 10.1016/j.bbabio.2008.09.013. PMID: 18976630.
T. Morosinotto, R. Baronio, R. Bassi. Dynamics of chromophore binding to Lhc proteins in vivo and in vitro during operation of the xanthophyll cycle. „J Biol Chem”. 277 (40), s. 36913–36920, Oct 2002. DOI: 10.1074/jbc.M205339200. PMID: 12114527.
A.J. Young, H.A. Frank. Energy transfer reactions involving carotenoids: quenching of chlorophyll fluorescence. „J Photochem Photobiol B”. 36 (1), s. 3–15, Oct 1996. DOI: 10.1016/S1011-1344(96)07397-6. PMID: 8988608.
H. Neuman, N. Galpaz, F.X. Cunningham, D. Zamir i inni. The tomato mutation nxd1 reveals a gene necessary for neoxanthin biosynthesis and demonstrates that violaxanthin is a sufficient precursor for abscisic acid biosynthesis. „Plant J”. 78 (1), s. 80–93, Apr 2014. DOI: 10.1111/tpj.12451. PMID: 24506237.
L. Dall’Osto, A. Fiore, S. Cazzaniga, G. Giuliano i inni. Different roles of alpha- and beta-branch xanthophylls in photosystem assembly and photoprotection. „J Biol Chem”. 282 (48), s. 35056–35068, Nov 2007. DOI: 10.1074/jbc.M704729200. PMID: 17913714.
W.I. Gruszecki, W. Grudzinski, A. Banaszek-Glos, M. Matula i inni. Xanthophyll pigments in light-harvesting complex II in monomolecular layers: localisation, energy transfer and orientation. „Biochim Biophys Acta”. 1412 (2), s. 173–183, Jun 1999. PMID: 10393259.
C. Wilhelm, I. Lenarz-Weiler. Energy transfer and pigment composition in three chlorophyll b-containing light-harvesting complexes isolated from Mantoniella squamata (Prasinophyceae), Chlorella fusca (Chlorophyceae) and Sinapis alba. „Photosynth Res”. 13 (2), s. 101–111, Jan 1987. DOI: 10.1007/BF00035234. PMID: 24435780.
A.D. Hieber, R.C. Bugos, H.Y. Yamamoto. Plant lipocalins: violaxanthin de-epoxidase and zeaxanthin epoxidase. „Biochim Biophys Acta”. 1482 (1–2), s. 84–91, Oct 2000. PMID: 11058750.
P. Jahns, D. Latowski, K. Strzalka. Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. „Biochim Biophys Acta”. 1787 (1), s. 3–14, Jan 2009. DOI: 10.1016/j.bbabio.2008.09.013. PMID: 18976630.
T. Morosinotto, R. Baronio, R. Bassi. Dynamics of chromophore binding to Lhc proteins in vivo and in vitro during operation of the xanthophyll cycle. „J Biol Chem”. 277 (40), s. 36913–36920, Oct 2002. DOI: 10.1074/jbc.M205339200. PMID: 12114527.
A.J. Young, H.A. Frank. Energy transfer reactions involving carotenoids: quenching of chlorophyll fluorescence. „J Photochem Photobiol B”. 36 (1), s. 3–15, Oct 1996. DOI: 10.1016/S1011-1344(96)07397-6. PMID: 8988608.
H. Neuman, N. Galpaz, F.X. Cunningham, D. Zamir i inni. The tomato mutation nxd1 reveals a gene necessary for neoxanthin biosynthesis and demonstrates that violaxanthin is a sufficient precursor for abscisic acid biosynthesis. „Plant J”. 78 (1), s. 80–93, Apr 2014. DOI: 10.1111/tpj.12451. PMID: 24506237.