Zero- i niskopolowy magnetyczny rezonans jądrowy (Polish Wikipedia)

Analysis of information sources in references of the Wikipedia article "Zero- i niskopolowy magnetyczny rezonans jądrowy" in Polish language version.

refsWebsite
Global rank Polish rank
2nd place
6th place
4th place
7th place
1,182nd place
2,419th place
6,140th place
4,015th place
5th place
2nd place
1,911th place
2,038th place
low place
low place

doi.org

dx.doi.org

  • Dudari B. Burueva i inni, Chemical Reaction Monitoring using Zero-Field Nuclear Magnetic Resonance Enables Study of Heterogeneous Samples in Metal Containers, „Angewandte Chemie International Edition”, 59 (39), 2020, s. 17026–17032, DOI10.1002/anie.202006266, PMID32510813, PMCIDPMC7540358 [dostęp 2021-12-14] (ang.).
  • M.P. Ledbetter i inni, Near-Zero-Field Nuclear Magnetic Resonance, „Physical Review Letters”, 107 (10), 2011, s. 107601, DOI10.1103/PhysRevLett.107.107601 [dostęp 2021-12-14] (ang.).
  • Thomas Theis i inni, Chemical analysis using J-coupling multiplets in zero-field NMR, „Chemical Physics Letters”, 580, 2013, s. 160–165, DOI10.1016/j.cplett.2013.06.042 [dostęp 2021-12-14] (ang.).
  • A. Wilzewski i inni, A method for measurement of spin-spin couplings with sub-mHz precision using zero- to ultralow-field nuclear magnetic resonance, „Journal of Magnetic Resonance”, 284, 2017, s. 66–72, DOI10.1016/j.jmr.2017.08.016 [dostęp 2021-12-14] (ang.).
  • Ya. S. Greenberg, Application of superconducting quantum interference devices to nuclear magnetic resonance, „Reviews of Modern Physics”, 70 (1), 1998, s. 175–222, DOI10.1103/RevModPhys.70.175 [dostęp 2021-12-14] (ang.).
  • M.P. Ledbetter i inni, Optical detection of NMR J-spectra at zero magnetic field, „Journal of Magnetic Resonance”, 199 (1), 2009, s. 25–29, DOI10.1016/j.jmr.2009.03.008 [dostęp 2021-12-14] (ang.).
  • Michael C.D. Tayler i inni, Invited Review Article: Instrumentation for nuclear magnetic resonance in zero and ultralow magnetic field, „Review of Scientific Instruments”, 88 (9), 2017, s. 091101, DOI10.1063/1.5003347 [dostęp 2021-12-14] (ang.).
  • D. Sheng i inni, Subfemtotesla Scalar Atomic Magnetometry Using Multipass Cells, „Physical Review Letters”, 110 (16), 2013, s. 160802, DOI10.1103/PhysRevLett.110.160802 [dostęp 2021-12-14] (ang.).
  • Meghan E. Halse, Perspectives for hyperpolarisation in compact NMR, „Trends in Analytical Chemistry”, 83, 2016, s. 76–83, DOI10.1016/j.trac.2016.05.004 [dostęp 2021-12-14] (ang.).
  • Boyd M. Goodson, Nuclear Magnetic Resonance of Laser-Polarized Noble Gases in Molecules, Materials, and Organisms, „Journal of Magnetic Resonance”, 155 (2), 2002, s. 157–216, DOI10.1006/jmre.2001.2341 [dostęp 2021-12-14] (ang.).
  • Peter M. Richardson i inni, SABRE hyperpolarization enables high-sensitivity 1 H and 13 C benchtop NMR spectroscopy, „The Analyst”, 143 (14), 2018, s. 3442–3450, DOI10.1039/C8AN00596F, PMID29917031, PMCIDPMC6040279 [dostęp 2021-12-14] (ang.).
  • T. Theis i inni, Parahydrogen-enhanced zero-field nuclear magnetic resonance, „Nature Physics”, 7 (7), 2011, s. 571–575, DOI10.1038/nphys1986 [dostęp 2021-12-14] (ang.).
  • Richard A. Green i inni, The theory and practice of hyperpolarization in magnetic resonance using parahydrogen, „Progress in Nuclear Magnetic Resonance Spectroscopy”, 67, 2012, s. 1–48, DOI10.1016/j.pnmrs.2012.03.001 [dostęp 2021-12-14] (ang.).
  • Sami Jannin i inni, Application and methodology of dissolution dynamic nuclear polarization in physical, chemical and biological contexts, „Journal of Magnetic Resonance”, 305, 2019, s. 41–50, DOI10.1016/j.jmr.2019.06.001, PMID31203098, PMCIDPMC6616036 [dostęp 2021-12-14] (ang.).
  • Tobias F. Sjolander i inni, Transition-Selective Pulses in Zero-Field Nuclear Magnetic Resonance, „The Journal of Physical Chemistry A”, 120 (25), 2016, s. 4343–4348, DOI10.1021/acs.jpca.6b04017 [dostęp 2021-12-14] (ang.).
  • Tobias F. Sjolander i inni, 13 C-Decoupled J -Coupling Spectroscopy Using Two-Dimensional Nuclear Magnetic Resonance at Zero-Field, „The Journal of Physical Chemistry Letters”, 8 (7), 2017, s. 1512–1516, DOI10.1021/acs.jpclett.7b00349 [dostęp 2021-12-14] (ang.).
  • D.P. Weitekamp i inni, Zero-Field Nuclear Magnetic Resonance, „Physical Review Letters”, 50 (22), 1983, s. 1807–1810, DOI10.1103/PhysRevLett.50.1807 [dostęp 2021-12-14] (ang.).
  • I.M. Savukov, M.V. Romalis, NMR Detection with an Atomic Magnetometer, „Physical Review Letters”, 94 (12), 2005, s. 123001, DOI10.1103/PhysRevLett.94.123001 [dostęp 2021-12-14] (ang.).

gsu.edu

hyperphysics.phy-astr.gsu.edu

nih.gov

ncbi.nlm.nih.gov

  • Dudari B. Burueva i inni, Chemical Reaction Monitoring using Zero-Field Nuclear Magnetic Resonance Enables Study of Heterogeneous Samples in Metal Containers, „Angewandte Chemie International Edition”, 59 (39), 2020, s. 17026–17032, DOI10.1002/anie.202006266, PMID32510813, PMCIDPMC7540358 [dostęp 2021-12-14] (ang.).
  • Peter M. Richardson i inni, SABRE hyperpolarization enables high-sensitivity 1 H and 13 C benchtop NMR spectroscopy, „The Analyst”, 143 (14), 2018, s. 3442–3450, DOI10.1039/C8AN00596F, PMID29917031, PMCIDPMC6040279 [dostęp 2021-12-14] (ang.).
  • Sami Jannin i inni, Application and methodology of dissolution dynamic nuclear polarization in physical, chemical and biological contexts, „Journal of Magnetic Resonance”, 305, 2019, s. 41–50, DOI10.1016/j.jmr.2019.06.001, PMID31203098, PMCIDPMC6616036 [dostęp 2021-12-14] (ang.).

patents.google.com

physicsworld.com

worldcat.org

  • Malcolm H. Levitt, Spin dynamics. Basics of nuclear magnetic resonance, wyd. 2, Chichester, England 2008, ISBN 978-0-470-51118-3, OCLC 141380283.

zulf.eu

blog.zulf.eu