M.M.MeisnarM.M. i inni, Microstructural characterisation of rotary friction welded AA6082 and Ti-6Al-4V dissimilar joints, „Materials & Design”, 132, 2017, s. 188–197, DOI: 10.1016/j.matdes.2017.07.004, ISSN0264-1275 [dostęp 2019-10-12].
Anthony R.A.R.McAndrewAnthony R.A.R. i inni, A literature review of Ti-6Al-4V linear friction welding, „Progress in Materials Science”, 92, 2018, s. 225–257, DOI: 10.1016/j.pmatsci.2017.10.003, ISSN0079-6425 [dostęp 2020-01-16].
LucaL.RaimondiLucaL. i inni, Development of a novel monitoring system for the in-process characterisation of the machine and tooling effects in Inertia Friction Welding (IFW), „Mechanical Systems and Signal Processing”, 156, 2021, s. 107551, DOI: 10.1016/j.ymssp.2020.107551, ISSN0888-3270.
GuilongG.WangGuilongG. i inni, Study on microstructure evolution of AISI 304 stainless steel joined by rotary friction welding, „Welding in the World”, 62 (6), 2018, s. 1187–1193, DOI: 10.1007/s40194-018-0613-7, ISSN0043-2288 [dostęp 2019-12-21].
XujingX.NanXujingX. i inni, Modeling of rotary friction welding process based on maximum entropy production principle, „Journal of Manufacturing Processes”, 37, 2019, s. 21–27, DOI: 10.1016/j.jmapro.2018.11.016, ISSN1526-6125 [dostęp 2019-12-16].
Daniela RammingerD.R.PissantiDaniela RammingerD.R. i inni, Pipeline girth friction welding of the UNS S32205 duplex stainless steel, „Materials & Design”, 162, 2019, s. 198–209, DOI: 10.1016/j.matdes.2018.11.046, ISSN0264-1275 [dostęp 2019-07-11].
AndrzejA.KlimpelAndrzejA., Spawanie, zgrzewanie i cięcie metali : technologie, wyd. 1, (dodr.), Warszawa: Wydawnictwa Naukowo-Techniczne, 2009, ISBN 978-83-204-3625-9, OCLC751009144 [dostęp 2019-07-11]. Brak numerów stron w książce
M.M.MeisnarM.M. i inni, Microstructural characterisation of rotary friction welded AA6082 and Ti-6Al-4V dissimilar joints, „Materials & Design”, 132, 2017, s. 188–197, DOI: 10.1016/j.matdes.2017.07.004, ISSN0264-1275 [dostęp 2019-10-12].
Anthony R.A.R.McAndrewAnthony R.A.R. i inni, A literature review of Ti-6Al-4V linear friction welding, „Progress in Materials Science”, 92, 2018, s. 225–257, DOI: 10.1016/j.pmatsci.2017.10.003, ISSN0079-6425 [dostęp 2020-01-16].
LucaL.RaimondiLucaL. i inni, Development of a novel monitoring system for the in-process characterisation of the machine and tooling effects in Inertia Friction Welding (IFW), „Mechanical Systems and Signal Processing”, 156, 2021, s. 107551, DOI: 10.1016/j.ymssp.2020.107551, ISSN0888-3270.
GuilongG.WangGuilongG. i inni, Study on microstructure evolution of AISI 304 stainless steel joined by rotary friction welding, „Welding in the World”, 62 (6), 2018, s. 1187–1193, DOI: 10.1007/s40194-018-0613-7, ISSN0043-2288 [dostęp 2019-12-21].
XujingX.NanXujingX. i inni, Modeling of rotary friction welding process based on maximum entropy production principle, „Journal of Manufacturing Processes”, 37, 2019, s. 21–27, DOI: 10.1016/j.jmapro.2018.11.016, ISSN1526-6125 [dostęp 2019-12-16].
Daniela RammingerD.R.PissantiDaniela RammingerD.R. i inni, Pipeline girth friction welding of the UNS S32205 duplex stainless steel, „Materials & Design”, 162, 2019, s. 198–209, DOI: 10.1016/j.matdes.2018.11.046, ISSN0264-1275 [dostęp 2019-07-11].
W.D.W.D.JollyW.D.W.D., The use of acoustic emission as a weld quality monitor, Pacific Northwest Lab, 1969, OCLC929865942 [dostęp 2021-04-18]. Brak numerów stron w książce