Smith, M. R.; Martinez, T. «Improving classification accuracy by identifying and removing instances that should be misclassified». The 2011 International Joint Conference on Neural Networks. [S.l.: s.n.] ISBN978-1-4244-9635-8. doi:10.1109/IJCNN.2011.6033571
«There and back again: Outlier detection between statistical reasoning and data mining algorithms». Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 8. ISSN1942-4787. doi:10.1002/widm.1280
«Local outlier detection reconsidered: A generalized view on locality with applications to spatial, video, and network outlier detection». Data Mining and Knowledge Discovery. 28. doi:10.1007/s10618-012-0300-z
«Tensor-based anomaly detection: An interdisciplinary survey». Knowledge-Based Systems. 98. doi:10.1016/j.knosys.2016.01.027
«A survey on unsupervised outlier detection in high-dimensional numerical data». Statistical Analysis and Data Mining. 5. doi:10.1002/sam.11161
«Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection». ACM Transactions on Knowledge Discovery from Data. 10. doi:10.1145/2733381
«On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study». Data Mining and Knowledge Discovery. 30. ISSN1384-5810. doi:10.1007/s10618-015-0444-8
«Computer System Intrusion Detection: A Survey». Technical Report, Department of Computer Science, University of Virginia, Charlottesville, VA. CiteSeerX10.1.1.24.7802
«There and back again: Outlier detection between statistical reasoning and data mining algorithms». Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 8. ISSN1942-4787. doi:10.1002/widm.1280
«On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study». Data Mining and Knowledge Discovery. 30. ISSN1384-5810. doi:10.1007/s10618-015-0444-8