Duplo fatorial (Portuguese Wikipedia)

Analysis of information sources in references of the Wikipedia article "Duplo fatorial" in Portuguese language version.

refsWebsite
Global rank Portuguese rank
451st place
981st place
2nd place
4th place
69th place
195th place
3rd place
6th place
513th place
605th place
low place
low place

ams.org

  • Meserve, B. E. (1948), «Classroom Notes: Double Factorials», The American Mathematical Monthly, 55 (7): 425–426, MR 1527019, doi:10.2307/2306136 
  • Gould, Henry; Quaintance, Jocelyn (2012), «Double fun with double factorials», Mathematics Magazine, 85 (3): 177–192, MR 2924154, doi:10.4169/math.mag.85.3.177 .
  • Dale, M. R. T.; Moon, J. W. (1993), «The permuted analogues of three Catalan sets», Journal of Statistical Planning and Inference, 34 (1): 75–87, MR 1209991, doi:10.1016/0378-3758(93)90035-5 .
  • E.g., in Henderson, Daniel J.; Parmeter, Christopher F. (2012), «Canonical higher-order kernels for density derivative estimation», Statistics & Probability Letters, 82 (7): 1383–1387, MR 2929790, doi:10.1016/j.spl.2012.03.013  and Nielsen, B. (1999), «The likelihood-ratio test for rank in bivariate canonical correlation analysis», Biometrika, 86 (2): 279–288, MR 1705359, doi:10.1093/biomet/86.2.279 .
  • Dale, M. R. T.; Narayana, T. V. (1986), «A partition of Catalan permuted sequences with applications», Journal of Statistical Planning and Inference, 14 (2): 245–249, MR 852528, doi:10.1016/0378-3758(86)90161-8 .
  • Janson, Svante (2008), «Plane recursive trees, Stirling permutations and an urn model», Fifth Colloquium on Mathematics and Computer Science, Discrete Math. Theor. Comput. Sci. Proc., AI, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, pp. 541–547, MR 2508813, arXiv:0803.1129Acessível livremente .
  • Dassios, George; Kiriaki, Kiriakie (1987), «A useful application of Gauss theorem», Bulletin de la Société Mathématique de Grèce, 28 (part A): 40–43, MR 935868 .

arxiv.org

  • Callan, David (2009), A combinatorial survey of identities for the double factorial, arXiv:0906.1317Acessível livremente .
  • Janson, Svante (2008), «Plane recursive trees, Stirling permutations and an urn model», Fifth Colloquium on Mathematics and Computer Science, Discrete Math. Theor. Comput. Sci. Proc., AI, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, pp. 541–547, MR 2508813, arXiv:0803.1129Acessível livremente .

books.google.com

doi.org

dx.doi.org

tugraz.at

math.tugraz.at

wolfram.com

functions.wolfram.com