Džamonja, Mirna; Kunen, Kenneth (1995). If μ is a Borel measure on X, the measure algebra of (X,μ) is the Boolean algebra of all Borel sets modulo μ-null sets. If μ is finite, then such a measure algebra is also a metric space, with the distance between the two sets being the measure of their symmetric difference. Then, we say that μ is separable iff this metric space is separable as a topological space.. «Properties of the class of measure separable compact spaces»(PDF). Fundamenta Mathematicae (em inglês). 262 páginas. Consultado em 5 de outubro de 2016A referência emprega parâmetros obsoletos |coautores= (ajuda)