Backpropagation (Romanian Wikipedia)

Analysis of information sources in references of the Wikipedia article "Backpropagation" in Romanian language version.

refsWebsite
Global rank Romanian rank
2nd place
3rd place
18th place
27th place
4th place
4th place
3rd place
6th place
69th place
132nd place
5th place
11th place
low place
low place
6th place
23rd place
43rd place
2nd place
3,290th place
99th place
low place
low place
7,446th place
5,129th place
9,893rd place
low place
low place
low place
low place
low place
415th place
414th place
1st place
1st place
4,537th place
6,709th place
low place
low place
low place
low place
low place
low place
652nd place
2,095th place

archive.org

arxiv.org

auburn.edu

eng.auburn.edu

books.google.com

  • Leibniz, Gottfried Wilhelm Freiherr von (). The Early Mathematical Manuscripts of Leibniz: Translated from the Latin Texts Published by Carl Immanuel Gerhardt with Critical and Historical Notes (Leibniz published the chain rule in a 1676 memoir) (în engleză). Open court publishing Company. p. 90. ISBN 9780598818461. 
  • Griewank, Andreas; Walther, Andrea (). Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Second Edition. SIAM. ISBN 978-0-89871-776-1. 
  • Alpaydin, Ethem (). Introduction to Machine Learning. MIT Press. ISBN 978-0-262-01243-0. 

deeplearningbook.org

  • Goodfellow, Bengio & Courville 2016, p. 214.
  • Goodfellow, Bengio & Courville 2016, p. 200. , "The term back-propagation is often misunderstood as meaning the whole learning algorithm for multilayer neural networks. Backpropagation refers only to the method for computing the gradient, while other algorithms, such as stochastic gradient descent, is used to perform learning using this gradient."

doi.org

harvard.edu

adsabs.harvard.edu

ieee.org

spectrum.ieee.org

incompleteideas.net

  • Sutton, Richard S.; Barto, Andrew G. (). „11.1 TD-Gammon”. Reinforcement Learning: An Introduction (ed. 2nd). Cambridge, MA: MIT Press. 

janbasktraining.com

mit.edu

direct.mit.edu

neurips.cc

proceedings.neurips.cc

nih.gov

ncbi.nlm.nih.gov

sudoc.fr

tools.wmflabs.org

toronto.edu

cs.toronto.edu

umt.edu

scholarworks.umt.edu

web.archive.org

werbos.com

wikidata.org

worldcat.org

  • Bryson, Arthur E. (). „A gradient method for optimizing multi-stage allocation processes”. Proceedings of the Harvard Univ. Symposium on digital computers and their applications, 3–6 April 1961. Cambridge: Harvard University Press. OCLC 498866871. 
  • Hertz, John (). Introduction to the theory of neural computation. Krogh, Anders., Palmer, Richard G. Redwood City, Calif.: Addison-Wesley. p. 8. ISBN 0-201-50395-6. OCLC 21522159. 

wpengine.com

coeieor.wpengine.com