en Anderson, D. D. (). „GCD domains, Gauss' lemma, and contents of polynomials”. În Chapman, Scott T.; Glaz, Sarah. Non-Noetherian Commutative Ring Theory. Mathematics and its Application. 520. Dordrecht: Kluwer Academic Publishers. pp. 1–31. doi:10.1007/978-1-4757-3180-4_1. MR1858155.
en Ali, Majid M.; Smith, David J. (), „Generalized GCD rings. II”, Beiträge zur Algebra und Geometrie, 44 (1): 75–98, MR1990985. P. 84: "It is easy to see that an integral domain is a Prüfer GCD-domain if and only if it is a Bezout domain, and that a Prüfer domain need not be a GCD-domain.".
en Anderson, D. D. (). „GCD domains, Gauss' lemma, and contents of polynomials”. În Chapman, Scott T.; Glaz, Sarah. Non-Noetherian Commutative Ring Theory. Mathematics and its Application. 520. Dordrecht: Kluwer Academic Publishers. pp. 1–31. doi:10.1007/978-1-4757-3180-4_1. MR1858155.
emis.de
en Ali, Majid M.; Smith, David J. (), „Generalized GCD rings. II”, Beiträge zur Algebra und Geometrie, 44 (1): 75–98, MR1990985. P. 84: "It is easy to see that an integral domain is a Prüfer GCD-domain if and only if it is a Bezout domain, and that a Prüfer domain need not be a GCD-domain.".