Domeniu c.m.m.d.c. (Romanian Wikipedia)

Analysis of information sources in references of the Wikipedia article "Domeniu c.m.m.d.c." in Romanian language version.

refsWebsite
Global rank Romanian rank
451st place
697th place
2nd place
3rd place
low place
low place
3,707th place
8,468th place
6,086th place
low place

ams.org

  • en Anderson, D. D. (). „GCD domains, Gauss' lemma, and contents of polynomials”. În Chapman, Scott T.; Glaz, Sarah. Non-Noetherian Commutative Ring Theory. Mathematics and its Application. 520. Dordrecht: Kluwer Academic Publishers. pp. 1–31. doi:10.1007/978-1-4757-3180-4_1. MR 1858155. 
  • en Ali, Majid M.; Smith, David J. (), „Generalized GCD rings. II”, Beiträge zur Algebra und Geometrie, 44 (1): 75–98, MR 1990985 . P. 84: "It is easy to see that an integral domain is a Prüfer GCD-domain if and only if it is a Bezout domain, and that a Prüfer domain need not be a GCD-domain.".
  • en Gilmer, Robert; Parker, Tom (), „Divisibility Properties in Semigroup Rings”, Michigan Mathematical Journal, 22 (1): 65–86, MR 0342635 

doi.org

  • en Anderson, D. D. (). „GCD domains, Gauss' lemma, and contents of polynomials”. În Chapman, Scott T.; Glaz, Sarah. Non-Noetherian Commutative Ring Theory. Mathematics and its Application. 520. Dordrecht: Kluwer Academic Publishers. pp. 1–31. doi:10.1007/978-1-4757-3180-4_1. MR 1858155. 

emis.de

  • en Ali, Majid M.; Smith, David J. (), „Generalized GCD rings. II”, Beiträge zur Algebra und Geometrie, 44 (1): 75–98, MR 1990985 . P. 84: "It is easy to see that an integral domain is a Prüfer GCD-domain if and only if it is a Bezout domain, and that a Prüfer domain need not be a GCD-domain.".

ias.ac.in

projecteuclid.org