Izometrie (Romanian Wikipedia)

Analysis of information sources in references of the Wikipedia article "Izometrie" in Romanian language version.

refsWebsite
Global rank Romanian rank
2nd place
3rd place
207th place
281st place
451st place
697th place
26th place
69th place
4th place
4th place
low place
low place

ams.org

  • en Beckman, F. S.; Quarles, D. A., Jr. (). „On isometries of Euclidean spaces” (PDF). Proceedings of the American Mathematical Society. 4 (5): 810–815. doi:10.2307/2032415Accesibil gratuit. JSTOR 2032415. MR 0058193.
    Let T be a transformation (possibly many-valued) of () into itself.
    Let be the distance between points p and q of , and let Tp, Tq be any images of p and q, respectively.
    If there is a length a > 0 such that whenever , then T is a Euclidean transformation of onto itself.
     

doi.org

  • en Beckman, F. S.; Quarles, D. A., Jr. (). „On isometries of Euclidean spaces” (PDF). Proceedings of the American Mathematical Society. 4 (5): 810–815. doi:10.2307/2032415Accesibil gratuit. JSTOR 2032415. MR 0058193.
    Let T be a transformation (possibly many-valued) of () into itself.
    Let be the distance between points p and q of , and let Tp, Tq be any images of p and q, respectively.
    If there is a length a > 0 such that whenever , then T is a Euclidean transformation of onto itself.
     
  • en Roweis, S. T.; Saul, L. K. (). „Nonlinear Dimensionality Reduction by Locally Linear Embedding”. Science. 290 (5500): 2323–2326. CiteSeerX 10.1.1.111.3313Accesibil gratuit. doi:10.1126/science.290.5500.2323. PMID 11125150. 
  • en Zhang, Zhenyue; Zha, Hongyuan (). „Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment”. SIAM Journal on Scientific Computing. 26 (1): 313–338. CiteSeerX 10.1.1.211.9957Accesibil gratuit. doi:10.1137/s1064827502419154. 

jstor.org

  • en Beckman, F. S.; Quarles, D. A., Jr. (). „On isometries of Euclidean spaces” (PDF). Proceedings of the American Mathematical Society. 4 (5): 810–815. doi:10.2307/2032415Accesibil gratuit. JSTOR 2032415. MR 0058193.
    Let T be a transformation (possibly many-valued) of () into itself.
    Let be the distance between points p and q of , and let Tp, Tq be any images of p and q, respectively.
    If there is a length a > 0 such that whenever , then T is a Euclidean transformation of onto itself.
     

nih.gov

ncbi.nlm.nih.gov

nips.cc

papers.nips.cc

psu.edu

citeseerx.ist.psu.edu