Pavare pitagoreică (Romanian Wikipedia)

Analysis of information sources in references of the Wikipedia article "Pavare pitagoreică" in Romanian language version.

refsWebsite
Global rank Romanian rank
2nd place
3rd place
451st place
697th place
26th place
69th place
702nd place
1,533rd place
6th place
23rd place
low place
low place
3rd place
6th place

ams.org

  • en Martini, Horst; Makai, Endre; Soltan, Valeriu (), „Unilateral tilings of the plane with squares of three sizes”, Beiträge zur Algebra und Geometrie, 39 (2): 481–495, MR 1642720 .
  • Aguiló, Francesc; Fiol, Miquel Angel; Fiol, Maria Lluïsa (), „Periodic tilings as a dissection method”, American Mathematical Monthly, 107 (4): 341–352, doi:10.2307/2589179, JSTOR 2589179, MR 1763064 .
  • Faptul că conjectura sa era adevărată pentru pavările bidimensionale era deja cunoscut de Keller, dar de atunci s-a dovedit falsă pentru dimensiunile de opt și superioare. Pentru un sondaj recent privind rezultatele legate de această presupunere, a se vedea en Zong, Chuanming (), „What is known about unit cubes”, Bulletin of the American Mathematical Society, New Series, 42 (2): 181–211, doi:10.1090/S0273-0979-05-01050-5Accesibil gratuit, MR 2133310 .
  • en Bölcskei, Attila (), „Filling space with cubes of two sizes”, Publicationes Mathematicae Debrecen, 59 (3–4): 317–326, MR 1874434 . Vezi și Dawson (1984), care include o ilustrare a pavărilor tridimensionale, atribuită lui Rogers, dar citată într-o lucrare din 1960 a lui Richard K. Guy: en Dawson, R. J. M. (), „On filling space with different integer cubes”, Journal of Combinatorial Theory, Series A, 36 (2): 221–229, doi:10.1016/0097-3165(84)90007-4Accesibil gratuit, MR 0734979 
  • Figura 3 din en Danzer, Ludwig; Grünbaum, Branko; Shephard, G. C. (), „Unsolved Problems: Can All Tiles of a Tiling Have Five-Fold Symmetry?”, The American Mathematical Monthly, 89 (8): 568–570+583–585, doi:10.2307/2320829, JSTOR 2320829, MR 1540019 .

archive.org

books.google.com

  • en Ostermann, Alexander; Wanner, Gerhard (), „Thales and Pythagoras”, Geometry by Its History, Undergraduate Texts in Mathematics, Springer, pp. 3–26, doi:10.1007/978-3-642-29163-0_1 . See in particular pp. 15–16.

doi.org

  • en Nelsen, Roger B. (noiembrie 2003), „Paintings, plane tilings, and proofs” (PDF), Math Horizons, 11 (2): 5–8, doi:10.1080/10724117.2003.12021741 . Reprinted in Haunsperger, Deanna; Kennedy, Stephen (), The Edge of the Universe: Celebrating Ten Years of Math Horizons, Spectrum Series, Mathematical Association of America, pp. 295–298, ISBN 978-0-88385-555-3 . See also Alsina, Claudi; Nelsen, Roger B. (), Charming proofs: a journey into elegant mathematics, Dolciani mathematical expositions, 42, Mathematical Association of America, pp. 168–169, ISBN 978-0-88385-348-1 
  • Aguiló, Francesc; Fiol, Miquel Angel; Fiol, Maria Lluïsa (), „Periodic tilings as a dissection method”, American Mathematical Monthly, 107 (4): 341–352, doi:10.2307/2589179, JSTOR 2589179, MR 1763064 .
  • en Ostermann, Alexander; Wanner, Gerhard (), „Thales and Pythagoras”, Geometry by Its History, Undergraduate Texts in Mathematics, Springer, pp. 3–26, doi:10.1007/978-3-642-29163-0_1 . See in particular pp. 15–16.
  • en Steurer, Walter; Deloudi, Sofia (), „3.5.3.7 The Klotz construction”, Crystallography of Quasicrystals: Concepts, Methods and Structures, Springer Series in Materials Science, 126, Springer, pp. 91–92, doi:10.1007/978-3-642-01899-2Accesibil gratuit, ISBN 978-3-642-01898-5 .
  • Faptul că conjectura sa era adevărată pentru pavările bidimensionale era deja cunoscut de Keller, dar de atunci s-a dovedit falsă pentru dimensiunile de opt și superioare. Pentru un sondaj recent privind rezultatele legate de această presupunere, a se vedea en Zong, Chuanming (), „What is known about unit cubes”, Bulletin of the American Mathematical Society, New Series, 42 (2): 181–211, doi:10.1090/S0273-0979-05-01050-5Accesibil gratuit, MR 2133310 .
  • en Bölcskei, Attila (), „Filling space with cubes of two sizes”, Publicationes Mathematicae Debrecen, 59 (3–4): 317–326, MR 1874434 . Vezi și Dawson (1984), care include o ilustrare a pavărilor tridimensionale, atribuită lui Rogers, dar citată într-o lucrare din 1960 a lui Richard K. Guy: en Dawson, R. J. M. (), „On filling space with different integer cubes”, Journal of Combinatorial Theory, Series A, 36 (2): 221–229, doi:10.1016/0097-3165(84)90007-4Accesibil gratuit, MR 0734979 
  • en Burns, Aidan (), „78.13 Fractal tilings”, Mathematical Gazette, 78 (482): 193–196, doi:10.2307/3618577, JSTOR 3618577 . Rigby, John (), „79.51 Tiling the plane with similar polygons of two sizes”, Mathematical Gazette, 79 (486): 560–561, doi:10.2307/3618091, JSTOR 3618091 .
  • Figura 3 din en Danzer, Ludwig; Grünbaum, Branko; Shephard, G. C. (), „Unsolved Problems: Can All Tiles of a Tiling Have Five-Fold Symmetry?”, The American Mathematical Monthly, 89 (8): 568–570+583–585, doi:10.2307/2320829, JSTOR 2320829, MR 1540019 .
  • en Sánchez, José; Escrig, Félix (decembrie 2011), „Frames designed by Leonardo with short pieces: An analytical approach”, International Journal of Space Structures, 26 (4): 289–302, doi:10.1260/0266-3511.26.4.289 .

emis.de

jstor.org

upenn.edu

www-stat.wharton.upenn.edu

  • en Nelsen, Roger B. (noiembrie 2003), „Paintings, plane tilings, and proofs” (PDF), Math Horizons, 11 (2): 5–8, doi:10.1080/10724117.2003.12021741 . Reprinted in Haunsperger, Deanna; Kennedy, Stephen (), The Edge of the Universe: Celebrating Ten Years of Math Horizons, Spectrum Series, Mathematical Association of America, pp. 295–298, ISBN 978-0-88385-555-3 . See also Alsina, Claudi; Nelsen, Roger B. (), Charming proofs: a journey into elegant mathematics, Dolciani mathematical expositions, 42, Mathematical Association of America, pp. 168–169, ISBN 978-0-88385-348-1