Teorema lui Pitagora (Romanian Wikipedia)

Analysis of information sources in references of the Wikipedia article "Teorema lui Pitagora" in Romanian language version.

refsWebsite
Global rank Romanian rank
3rd place
6th place
2nd place
3rd place
1st place
1st place
26th place
69th place
low place
1,479th place
576th place
2,132nd place
6,602nd place
1,262nd place
5th place
11th place
7,586th place
7,752nd place
69th place
132nd place
low place
low place
low place
9,554th place
low place
5,041st place
155th place
154th place
5,424th place
6,120th place
low place
6,162nd place
916th place
1,228th place
low place
4,683rd place
670th place
1,710th place
low place
low place
16th place
24th place
low place
low place
low place
low place
549th place
372nd place

arxiv.org

books.google.com

cam.ac.uk

dpmms.cam.ac.uk

  • Pentru o discuție extinsă referitoare la această generalizare, vezi, de exemplu, Willie W. Wong Arhivat în , la Wayback Machine. 2002, A generalized n-dimensional Pythagorean theorem (engleză).

clarku.edu

aleph0.clarku.edu

colgate.edu

math.colgate.edu

cut-the-knot.org

doi.org

ed.gov

eric.ed.gov

imdb.com

jstor.org

  • Otto Neugebauer (). The exact sciences in antiquity (ed. Republication of 1957 Brown University Press 2nd). Courier Dover Publications. p. 36. ISBN 0-486-22332-9. . For a different view, see Dick Teresi (). Lost Discoveries: The Ancient Roots of Modern Science. Simon and Schuster. p. 52. ISBN 0-7432-4379-X. , where the speculation is made that the first column of tablet 322 in the Plimpton collection supports a Babylonian knowledge of some elements of trigonometry. That notion is pretty much laid to rest, however, by Eleanor Robson (). „Words and Pictures: New Light on Plimpton 322”. The American Mathematical Monthly. Mathematical Association of America. 109 (2): 105–120. doi:10.2307/2695324. ISSN 0002-9890. JSTOR 2695324.  (pdf file Arhivat în , la Wayback Machine.). The generally accepted view today is that the Babylonians had no awareness of trigonometric functions. See also Abdulrahman A. Abdulaziz (). „The Plimpton 322 Tablet and the Babylonian Method of Generating Pythagorean Triples”. arXiv:1004.0025Accesibil gratuit [math.HO].  §2, page 7.
  • Mike Staring (). „The Pythagorean proposition: A proof by means of calculus”. Mathematics Magazine. Mathematical Association of America. 69 (1): 45–46. doi:10.2307/2691395. JSTOR 2691395. 
  • O discuție detaliată despre contribuțiile lui Hippasos se găsesc în Kurt Von Fritz (). „The Discovery of Incommensurability by Hippasus of Metapontum”. Annals of Mathematics. Second Series. Annals of Mathematics. 46 (2): 242–264. JSTOR 1969021. 
  • WS Massey (). „Cross products of vectors in higher-dimensional Euclidean spaces”. The American Mathematical Monthly. Mathematical Association of America. 90 (10): 697–701. doi:10.2307/2323537. JSTOR 2323537. 
  • Aydin Sayili (). „Thâbit ibn Qurra's Generalization of the Pythagorean Theorem”. Isis. 51 (1): 35–37. doi:10.1086/348837. JSTOR 227603. 

ngccoin.com

recreatiimatematice.ro

sefanet.ch

homepage.sefanet.ch

slu.edu

tripod.com

jeff560.tripod.com

truman.edu

math.truman.edu

tufts.edu

perseus.tufts.edu

ulpgc.es

dma.ulpgc.es

uregina.ca

hyperion.cc.uregina.ca

usma.edu

math.usma.edu

utexas.edu

cs.utexas.edu

visithcandersen.dk

web.archive.org

worldcat.org