Horvath, I.; Hakkila, J.; Bagoly, Z. (). „The largest structure of the Universe, defined by Gamma-Ray Bursts”. arXiv:1311.1104 [astro-ph.CO].
Meszaros, Attila; et al. (). „Impact on cosmology of the celestial anisotropy of the short gamma-ray bursts”. Baltic Astronomy. 18: 293–296. arXiv:1005.1558. Bibcode:2009BaltA..18..293M.
Meszaros, Attila; et al. (). „Impact on cosmology of the celestial anisotropy of the short gamma-ray bursts”. Baltic Astronomy. 18: 293–296. arXiv:1005.1558. Bibcode:2009BaltA..18..293M.
Using Tiny Particles To Answer Giant Questions. Science Friday, 3 Apr 2009. According to the transcript, Brian Greene makes the comment "And actually, in the far future, everything we now see, except for our local galaxy and a region of galaxies will have disappeared. The entire universe will disappear before our very eyes, and it's one of my arguments for actually funding cosmology. We've got to do it while we have a chance."
The comoving distance of the future visibility limit is calculated on p. 8 of Gott et al.'s A Map of the Universe to be 4.50 times the Hubble radius, given as 4.220 billion parsecs (13.76 billion light-years), whereas the current comoving radius of the observable universe is calculated on p. 7 to be 3.38 times the Hubble radius. The number of galaxies in a sphere of a given comoving radius is proportional to the cube of the radius, so as shown on p. 8 the ratio between the number of galaxies observable in the future visibility limit to the number of galaxies observable today would be (4.50/3.38)3 = 2.36.