CD38 (Russian Wikipedia)

Analysis of information sources in references of the Wikipedia article "CD38" in Russian language version.

refsWebsite
Global rank Russian rank
2nd place
3rd place
4th place
6th place
1,626th place
1,163rd place
11th place
286th place
68th place
107th place
1st place
1st place

doi.org

dx.doi.org

  • Nata K, Takamura T, Karasawa T, Kumagai T, Hashioka W, Tohgo A, Yonekura H, Takasawa S, Nakamura S, Okamoto H (1997). Human gene encoding CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase): organization, nucleotide sequence and alternative splicing. Gene. 186 (2): 285–292. doi:10.1016/S0378-1119(96)00723-8 PMID 9074508
  • La Rovere, R. M., Roest, G., Bultynck, G., & Parys, J. B. (2016). Intracellular Ca2+ signaling and Ca2+ microdomains in the control of cell survival, apoptosis and autophagy. Cell calcium, 60(2), 74-87. doi:10.1016/j.ceca.2016.04.005
  • Rah, S. Y., Mushtaq, M., Nam, T. S., Kim, S. H., & Kim, U. H. (2010). Generation of cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate by CD38 for Ca2+ signaling in interleukin-8-treated lymphokine-activated killer cells. Journal of Biological Chemistry, 285(28), 21877-21887. doi:10.1074/jbc.M109.066290
  • Camacho-Pereira, J., Tarragó, M. G., Chini, C. C., Nin, V., Escande, C., Warner, G. M., ... & Chini, E. N. (2016). CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell metabolism, 23(6), 1127-1139. doi:10.1016/j.cmet.2016.05.006 PMC 4911708
  • Chini, E. N., Chini, C. C., Netto, J. M. E., de Oliveira, G. C., & van Schooten, W. (2018). The Pharmacology of CD38/NADase: An Emerging Target in Cancer and Diseases of Aging. Trends in pharmacological sciences. 39(4), 424-436 doi:10.1016/j.tips.2018.02.001
  • Jin, D., Liu, H. X., Hirai, H., Torashima, T., Nagai, T., Lopatina, O., ... & Fujita, K. (2007). CD38 is critical for social behaviour by regulating oxytocin secretion. Nature, 446(7131), 41 doi:10.1038/nature05526
  • Tarragó, M. G., Chini, C. C., Kanamori, K. S., Warner, G. M., Caride, A., de Oliveira, G. C., ... & Chini, E. N. (2018). A potent and specific CD38 inhibitor ameliorates age-related metabolic dysfunction by reversing tissue NAD+ decline. Cell metabolism, 27(5), 1081-1095. PMID 29719225 PMC 5935140 doi:10.1016/j.cmet.2018.03.016
  • Peclat, T. R., Thompson, K. L., Warner, G. M., Chini, C. C., Tarragó, M. G., Mazdeh, D. Z., ... & Chini, E. N. (2022). CD38 inhibitor 78c increases mice lifespan and healthspan in a model of chronological aging. Aging Cell, e13589. PMID 35263032 doi:10.1111/acel.13589
  • Mayer, K. A., Budde, K., Halloran, P. F., Doberer, K., Rostaing, L., Eskandary, F., ... & Böhmig, G. A. (2022). Safety, tolerability, and efficacy of monoclonal CD38 antibody felzartamab in late antibody-mediated renal allograft rejection: study protocol for a phase 2 trial. Trials, 23(1), 1-15. PMID 35395951 PMC 8990453 doi:10.1186/s13063-022-06198-9
  • Escande, C., Nin, V., Price, N. L., Capellini, V., Gomes, A. P., Barbosa, M. T., … & Chini, E. N. (2013). Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes, 62(4), 1084—1093. PMID 23172919 PMC 3609577 doi:10.2337/db12-1139
  • Boslett, James; Hemann, Craig; Zhao, Yong Juan; Lee, Hon-Cheung; Zweier, Jay L. (2017). "Luteolinidin protects the postischemic heart through CD38 inhibition with preservation of NAD(P)(H)". The Journal of Pharmacology and Experimental Therapeutics. 361(1): 99–108. doi:10.1124/jpet.116.239459 PMC 5363772 PMID 28108596
  • Lagu, B., Wu, X., Kulkarni, S., Paul, R., Becherer, J. D., Olson, L., ... & Andrzejewski, S. (2022). Orally Bioavailable Enzymatic Inhibitor of CD38, MK-0159, Protects against Ischemia/Reperfusion Injury in the Murine Heart. Journal of medicinal chemistry, 65(13), 9418-9446. PMID 35762533 doi:10.1021/acs.jmedchem.2c00688
  • Chen, P. M., Katsuyama, E., Satyam, A., Li, H., Rubio, J., Jung, S., ... & Tsokos, G. C. (2022). CD38 reduces mitochondrial fitness and cytotoxic T cell response against viral infection in lupus patients by suppressing mitophagy. Science Advances, 8(24), eabo4271. PMID 35704572 PMC 9200274 doi:10.1126/sciadv.abo4271
  • Ugamraj, H. S., Dang, K., Ouisse, L. H., Buelow, B., Chini, E. N., Castello, G., ... & Dalvi, P. (2022, December). TNB-738, a biparatopic antibody, boosts intracellular NAD+ by inhibiting CD38 ecto-enzyme activity. mAbs, 14(1), 2095949. Taylor & Francis. PMID 35867844 PMC 9311320 doi:10.1080/19420862.2022.2095949

doi.org

  • De Flora, A., Zocchi, E., Guida, L., Franco, L., & Bruzzone, S. (2004). Autocrine and Paracrine Calcium Signaling by the CD38/NAD+/Cyclic ADP‐Ribose System. Annals of the New York Academy of Sciences, 1028(1), 176-191. https://doi.org/10.1196/annals.1322.021
  • Deshpande, D. A., White, T. A., Dogan, S., Walseth, T. F., Panettieri, R. A., & Kannan, M. S. (2005). CD38/cyclic ADP-ribose signaling: role in the regulation of calcium homeostasis in airway smooth muscle. American Journal of Physiology-Lung Cellular and Molecular Physiology, 288(5), L773-L788. https://doi.org/10.1152/ajplung.00217.2004
  • Ruan, Q., Ruan, J., Zhang, W., Qian, F., & Yu, Z. (2017). Targeting NAD+ degradation: The therapeutic potential of flavonoids for Alzheimer's disease and cognitive frailty. Pharmacological research. https://doi.org/10.1016/j.phrs.2017.08.010
  • Escande, C., Nin, V., Price, N. L., Capellini, V., Gomes, A. P., Barbosa, M. T., ... & Chini, E. N. (2013). Flavonoid Apigenin Is an Inhibitor of the NAD+ ase CD38. Diabetes, 62(4), 1084-1093. https://doi.org/10.2337/db12-1139
  • Nelissen, T. P., Bamford, R. A., Tochitani, S., Akkus, K., Kudzinskas, A., Yokoi, K., ... & Oguro-Ando, A. (2018). CD38 is required for dendritic organisation in visual cortex and hippocampus. Neuroscience. https://doi.org/10.1016/j.neuroscience.2017.12.050
  • Blacher E, Ben Baruch B, Levy A, Geva N, Green KD, Garneau-Tsodikova S, et al. (March 2015). "Inhibition of glioma progression by a newly discovered CD38 inhibitor". International Journal of Cancer. 136 (6): 1422—33. doi:10.1002/ijc.29095. PMID 25053177.
  • Kellenberger E, Kuhn I, Schuber F, Muller-Steffner H (July 2011). "Flavonoids as inhibitors of human CD38". Bioorganic & Medicinal Chemistry Letters. 21 (13): 3939—42. doi:10.1016/j.bmcl.2011.05.022. PMID 21641214.
  • Becherer JD, Boros EE, Carpenter TY, Cowan DJ, Deaton DN, Haffner CD, et al. (September 2015). "Discovery of 4-Amino-8-quinoline Carboxamides as Novel, Submicromolar Inhibitors of NAD-Hydrolyzing Enzyme CD38". Journal of Medicinal Chemistry. 58 (17): 7021—56. doi:10.1021/acs.jmedchem.5b00992. PMID 26267483.
  • Deaton DN, Haffner CD, Henke BR, Jeune MR, Shearer BG, Stewart EL, Stuart JD, Ulrich JC (May 2018). "2,4-Diamino-8-quinazoline carboxamides as novel, potent inhibitors of the NAD hydrolyzing enzyme CD38: Exploration of the 2-position structure-activity relationships". Bioorganic & Medicinal Chemistry. 26 (8): 2107—2150. doi:10.1016/j.bmc.2018.03.021. PMID 29576271.
  • Sepehri B, Ghavami R (January 2019). "Design of new CD38 inhibitors based on CoMFA modelling and molecular docking analysis of 4‑amino-8-quinoline carboxamides and 2,4-diamino-8-quinazoline carboxamides". SAR and QSAR in Environmental Research. 30 (1): 21—38. doi:10.1080/1062936X.2018.1545695. PMID 30489181. S2CID 54158219.
  • Sidiqi MH, Gertz MA (February 2019). "Daratumumab for the treatment of AL amyloidosis". Leukemia & Lymphoma. 60 (2): 295—301. doi:10.1080/10428194.2018.1485914. PMC 6342668. PMID 30033840.

ensembl.org

May2017.archive.ensembl.org

europa.eu

ema.europa.eu

nih.gov

ncbi.nlm.nih.gov

  • Ссылка на публикацию человека на PubMed: Национальный центр биотехнологической информации, Национальная медицинская библиотека США.
  • Ссылка на публикацию мыши на PubMed: Национальный центр биотехнологической информации, Национальная медицинская библиотека США.
  • Nata K, Takamura T, Karasawa T, Kumagai T, Hashioka W, Tohgo A, Yonekura H, Takasawa S, Nakamura S, Okamoto H (1997). Human gene encoding CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase): organization, nucleotide sequence and alternative splicing. Gene. 186 (2): 285–292. doi:10.1016/S0378-1119(96)00723-8 PMID 9074508
  • Chini EN. (2009). CD38 as a regulator of cellular NAD: a novel potential pharmacological target for metabolic conditions. Curr Pharm Des. 15(1): 57–63 PMC 2883294
  • Camacho-Pereira, J., Tarragó, M. G., Chini, C. C., Nin, V., Escande, C., Warner, G. M., ... & Chini, E. N. (2016). CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell metabolism, 23(6), 1127-1139. doi:10.1016/j.cmet.2016.05.006 PMC 4911708
  • Tarragó, M. G., Chini, C. C., Kanamori, K. S., Warner, G. M., Caride, A., de Oliveira, G. C., ... & Chini, E. N. (2018). A potent and specific CD38 inhibitor ameliorates age-related metabolic dysfunction by reversing tissue NAD+ decline. Cell metabolism, 27(5), 1081-1095. PMID 29719225 PMC 5935140 doi:10.1016/j.cmet.2018.03.016
  • Peclat, T. R., Thompson, K. L., Warner, G. M., Chini, C. C., Tarragó, M. G., Mazdeh, D. Z., ... & Chini, E. N. (2022). CD38 inhibitor 78c increases mice lifespan and healthspan in a model of chronological aging. Aging Cell, e13589. PMID 35263032 doi:10.1111/acel.13589
  • Sidiqi MH, Gertz MA (February 2019). "Daratumumab for the treatment of AL amyloidosis". Leukemia & Lymphoma. 60 (2): 295—301. doi:10.1080/10428194.2018.1485914. PMC 6342668. PMID 30033840.
  • Mayer, K. A., Budde, K., Halloran, P. F., Doberer, K., Rostaing, L., Eskandary, F., ... & Böhmig, G. A. (2022). Safety, tolerability, and efficacy of monoclonal CD38 antibody felzartamab in late antibody-mediated renal allograft rejection: study protocol for a phase 2 trial. Trials, 23(1), 1-15. PMID 35395951 PMC 8990453 doi:10.1186/s13063-022-06198-9
  • Escande, C., Nin, V., Price, N. L., Capellini, V., Gomes, A. P., Barbosa, M. T., … & Chini, E. N. (2013). Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes, 62(4), 1084—1093. PMID 23172919 PMC 3609577 doi:10.2337/db12-1139
  • Boslett, James; Hemann, Craig; Zhao, Yong Juan; Lee, Hon-Cheung; Zweier, Jay L. (2017). "Luteolinidin protects the postischemic heart through CD38 inhibition with preservation of NAD(P)(H)". The Journal of Pharmacology and Experimental Therapeutics. 361(1): 99–108. doi:10.1124/jpet.116.239459 PMC 5363772 PMID 28108596
  • Lagu, B., Wu, X., Kulkarni, S., Paul, R., Becherer, J. D., Olson, L., ... & Andrzejewski, S. (2022). Orally Bioavailable Enzymatic Inhibitor of CD38, MK-0159, Protects against Ischemia/Reperfusion Injury in the Murine Heart. Journal of medicinal chemistry, 65(13), 9418-9446. PMID 35762533 doi:10.1021/acs.jmedchem.2c00688
  • Chen, P. M., Katsuyama, E., Satyam, A., Li, H., Rubio, J., Jung, S., ... & Tsokos, G. C. (2022). CD38 reduces mitochondrial fitness and cytotoxic T cell response against viral infection in lupus patients by suppressing mitophagy. Science Advances, 8(24), eabo4271. PMID 35704572 PMC 9200274 doi:10.1126/sciadv.abo4271
  • Ugamraj, H. S., Dang, K., Ouisse, L. H., Buelow, B., Chini, E. N., Castello, G., ... & Dalvi, P. (2022, December). TNB-738, a biparatopic antibody, boosts intracellular NAD+ by inhibiting CD38 ecto-enzyme activity. mAbs, 14(1), 2095949. Taylor & Francis. PMID 35867844 PMC 9311320 doi:10.1080/19420862.2022.2095949

pubmed.ncbi.nlm.nih.gov

  • Blacher E, Ben Baruch B, Levy A, Geva N, Green KD, Garneau-Tsodikova S, et al. (March 2015). "Inhibition of glioma progression by a newly discovered CD38 inhibitor". International Journal of Cancer. 136 (6): 1422—33. doi:10.1002/ijc.29095. PMID 25053177.
  • Kellenberger E, Kuhn I, Schuber F, Muller-Steffner H (July 2011). "Flavonoids as inhibitors of human CD38". Bioorganic & Medicinal Chemistry Letters. 21 (13): 3939—42. doi:10.1016/j.bmcl.2011.05.022. PMID 21641214.
  • Becherer JD, Boros EE, Carpenter TY, Cowan DJ, Deaton DN, Haffner CD, et al. (September 2015). "Discovery of 4-Amino-8-quinoline Carboxamides as Novel, Submicromolar Inhibitors of NAD-Hydrolyzing Enzyme CD38". Journal of Medicinal Chemistry. 58 (17): 7021—56. doi:10.1021/acs.jmedchem.5b00992. PMID 26267483.
  • Deaton DN, Haffner CD, Henke BR, Jeune MR, Shearer BG, Stewart EL, Stuart JD, Ulrich JC (May 2018). "2,4-Diamino-8-quinazoline carboxamides as novel, potent inhibitors of the NAD hydrolyzing enzyme CD38: Exploration of the 2-position structure-activity relationships". Bioorganic & Medicinal Chemistry. 26 (8): 2107—2150. doi:10.1016/j.bmc.2018.03.021. PMID 29576271.
  • Sepehri B, Ghavami R (January 2019). "Design of new CD38 inhibitors based on CoMFA modelling and molecular docking analysis of 4‑amino-8-quinoline carboxamides and 2,4-diamino-8-quinazoline carboxamides". SAR and QSAR in Environmental Research. 30 (1): 21—38. doi:10.1080/1062936X.2018.1545695. PMID 30489181. S2CID 54158219.
  • Sidiqi MH, Gertz MA (February 2019). "Daratumumab for the treatment of AL amyloidosis". Leukemia & Lymphoma. 60 (2): 295—301. doi:10.1080/10428194.2018.1485914. PMC 6342668. PMID 30033840.

semanticscholar.org

api.semanticscholar.org

  • Sepehri B, Ghavami R (January 2019). "Design of new CD38 inhibitors based on CoMFA modelling and molecular docking analysis of 4‑amino-8-quinoline carboxamides and 2,4-diamino-8-quinazoline carboxamides". SAR and QSAR in Environmental Research. 30 (1): 21—38. doi:10.1080/1062936X.2018.1545695. PMID 30489181. S2CID 54158219.

web.archive.org