Nata K, Takamura T, Karasawa T, Kumagai T, Hashioka W, Tohgo A, Yonekura H, Takasawa S, Nakamura S, Okamoto H (1997). Human gene encoding CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase): organization, nucleotide sequence and alternative splicing. Gene. 186 (2): 285–292. doi:10.1016/S0378-1119(96)00723-8PMID9074508
La Rovere, R. M., Roest, G., Bultynck, G., & Parys, J. B. (2016). Intracellular Ca2+ signaling and Ca2+ microdomains in the control of cell survival, apoptosis and autophagy. Cell calcium, 60(2), 74-87. doi:10.1016/j.ceca.2016.04.005
Rah, S. Y., Mushtaq, M., Nam, T. S., Kim, S. H., & Kim, U. H. (2010). Generation of cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate by CD38 for Ca2+ signaling in interleukin-8-treated lymphokine-activated killer cells. Journal of Biological Chemistry, 285(28), 21877-21887. doi:10.1074/jbc.M109.066290
Camacho-Pereira, J., Tarragó, M. G., Chini, C. C., Nin, V., Escande, C., Warner, G. M., ... & Chini, E. N. (2016). CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell metabolism, 23(6), 1127-1139. doi:10.1016/j.cmet.2016.05.006PMC4911708
Chini, E. N., Chini, C. C., Netto, J. M. E., de Oliveira, G. C., & van Schooten, W. (2018). The Pharmacology of CD38/NADase: An Emerging Target in Cancer and Diseases of Aging. Trends in pharmacological sciences. 39(4), 424-436 doi:10.1016/j.tips.2018.02.001
Jin, D., Liu, H. X., Hirai, H., Torashima, T., Nagai, T., Lopatina, O., ... & Fujita, K. (2007). CD38 is critical for social behaviour by regulating oxytocin secretion. Nature, 446(7131), 41 doi:10.1038/nature05526
Tarragó, M. G., Chini, C. C., Kanamori, K. S., Warner, G. M., Caride, A., de Oliveira, G. C., ... & Chini, E. N. (2018). A potent and specific CD38 inhibitor ameliorates age-related metabolic dysfunction by reversing tissue NAD+ decline. Cell metabolism, 27(5), 1081-1095. PMID29719225PMC5935140doi:10.1016/j.cmet.2018.03.016
Peclat, T. R., Thompson, K. L., Warner, G. M., Chini, C. C., Tarragó, M. G., Mazdeh, D. Z., ... & Chini, E. N. (2022). CD38 inhibitor 78c increases mice lifespan and healthspan in a model of chronological aging. Aging Cell, e13589. PMID35263032doi:10.1111/acel.13589
Mayer, K. A., Budde, K., Halloran, P. F., Doberer, K., Rostaing, L., Eskandary, F., ... & Böhmig, G. A. (2022). Safety, tolerability, and efficacy of monoclonal CD38 antibody felzartamab in late antibody-mediated renal allograft rejection: study protocol for a phase 2 trial. Trials, 23(1), 1-15. PMID35395951PMC8990453doi:10.1186/s13063-022-06198-9
Escande, C., Nin, V., Price, N. L., Capellini, V., Gomes, A. P., Barbosa, M. T., … & Chini, E. N. (2013). Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes, 62(4), 1084—1093. PMID23172919PMC3609577doi:10.2337/db12-1139
Boslett, James; Hemann, Craig; Zhao, Yong Juan; Lee, Hon-Cheung; Zweier, Jay L. Luteolinidin protects the postischemic heart through CD38 inhibition with preservation of NAD(P)(H) (англ.) // J. Pharmacol. Exp. Ther.. — 2017. — Vol. 361, iss. 1. — P. 99–108. — doi:10.1124/jpet.116.239459. — PMID28108596. — PMC5363772.
Lagu, B., Wu, X., Kulkarni, S., Paul, R., Becherer, J. D., Olson, L., ... & Andrzejewski, S. (2022). Orally Bioavailable Enzymatic Inhibitor of CD38, MK-0159, Protects against Ischemia/Reperfusion Injury in the Murine Heart. Journal of medicinal chemistry, 65(13), 9418-9446. PMID35762533doi:10.1021/acs.jmedchem.2c00688
Chen, P. M., Katsuyama, E., Satyam, A., Li, H., Rubio, J., Jung, S., ... & Tsokos, G. C. (2022). CD38 reduces mitochondrial fitness and cytotoxic T cell response against viral infection in lupus patients by suppressing mitophagy. Science Advances, 8(24), eabo4271. PMID35704572PMC9200274doi:10.1126/sciadv.abo4271
Ugamraj, H. S., Dang, K., Ouisse, L. H., Buelow, B., Chini, E. N., Castello, G., ... & Dalvi, P. (2022, December). TNB-738, a biparatopic antibody, boosts intracellular NAD+ by inhibiting CD38 ecto-enzyme activity. mAbs, 14(1), 2095949. Taylor & Francis. PMID35867844PMC9311320doi:10.1080/19420862.2022.2095949
doi.org
De Flora, A., Zocchi, E., Guida, L., Franco, L., & Bruzzone, S. (2004). Autocrine and Paracrine Calcium Signaling by the CD38/NAD+/Cyclic ADP‐Ribose System. Annals of the New York Academy of Sciences, 1028(1), 176-191. https://doi.org/10.1196/annals.1322.021
Deshpande, D. A., White, T. A., Dogan, S., Walseth, T. F., Panettieri, R. A., & Kannan, M. S. (2005). CD38/cyclic ADP-ribose signaling: role in the regulation of calcium homeostasis in airway smooth muscle. American Journal of Physiology-Lung Cellular and Molecular Physiology, 288(5), L773-L788. https://doi.org/10.1152/ajplung.00217.2004
Ruan, Q., Ruan, J., Zhang, W., Qian, F., & Yu, Z. (2017). Targeting NAD+ degradation: The therapeutic potential of flavonoids for Alzheimer's disease and cognitive frailty. Pharmacological research. https://doi.org/10.1016/j.phrs.2017.08.010
Escande, C., Nin, V., Price, N. L., Capellini, V., Gomes, A. P., Barbosa, M. T., ... & Chini, E. N. (2013). Flavonoid Apigenin Is an Inhibitor of the NAD+ ase CD38. Diabetes, 62(4), 1084-1093. https://doi.org/10.2337/db12-1139
Nelissen, T. P., Bamford, R. A., Tochitani, S., Akkus, K., Kudzinskas, A., Yokoi, K., ... & Oguro-Ando, A. (2018). CD38 is required for dendritic organisation in visual cortex and hippocampus. Neuroscience. https://doi.org/10.1016/j.neuroscience.2017.12.050
Blacher E, Ben Baruch B, Levy A, Geva N, Green KD, Garneau-Tsodikova S, et al. (Март 2015). Inhibition of glioma progression by a newly discovered CD38 inhibitor. International Journal of Cancer. 136 (6): 1422—33. doi:10.1002/ijc.29095. PMID25053177.
Kellenberger E, Kuhn I, Schuber F, Muller-Steffner H (Июль 2011). Flavonoids as inhibitors of human CD38. Bioorganic & Medicinal Chemistry Letters. 21 (13): 3939—42. doi:10.1016/j.bmcl.2011.05.022. PMID21641214.
Becherer JD, Boros EE, Carpenter TY, Cowan DJ, Deaton DN, Haffner CD, et al. (Сентябрь 2015). Discovery of 4-Amino-8-quinoline Carboxamides as Novel, Submicromolar Inhibitors of NAD-Hydrolyzing Enzyme CD38. Journal of Medicinal Chemistry. 58 (17): 7021—56. doi:10.1021/acs.jmedchem.5b00992. PMID26267483.
Deaton DN, Haffner CD, Henke BR, Jeune MR, Shearer BG, Stewart EL, Stuart JD, Ulrich JC (Май 2018). 2,4-Diamino-8-quinazoline carboxamides as novel, potent inhibitors of the NAD hydrolyzing enzyme CD38: Exploration of the 2-position structure-activity relationships. Bioorganic & Medicinal Chemistry. 26 (8): 2107—2150. doi:10.1016/j.bmc.2018.03.021. PMID29576271.
Sepehri B, Ghavami R (Январь 2019). Design of new CD38 inhibitors based on CoMFA modelling and molecular docking analysis of 4‑amino-8-quinoline carboxamides and 2,4-diamino-8-quinazoline carboxamides. SAR and QSAR in Environmental Research. 30 (1): 21—38. doi:10.1080/1062936X.2018.1545695. PMID30489181. S2CID54158219.
Nata K, Takamura T, Karasawa T, Kumagai T, Hashioka W, Tohgo A, Yonekura H, Takasawa S, Nakamura S, Okamoto H (1997). Human gene encoding CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase): organization, nucleotide sequence and alternative splicing. Gene. 186 (2): 285–292. doi:10.1016/S0378-1119(96)00723-8PMID9074508
Chini EN. (2009). CD38 as a regulator of cellular NAD: a novel potential pharmacological target for metabolic conditions. Curr Pharm Des. 15(1): 57–63 PMC2883294
Camacho-Pereira, J., Tarragó, M. G., Chini, C. C., Nin, V., Escande, C., Warner, G. M., ... & Chini, E. N. (2016). CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell metabolism, 23(6), 1127-1139. doi:10.1016/j.cmet.2016.05.006PMC4911708
Tarragó, M. G., Chini, C. C., Kanamori, K. S., Warner, G. M., Caride, A., de Oliveira, G. C., ... & Chini, E. N. (2018). A potent and specific CD38 inhibitor ameliorates age-related metabolic dysfunction by reversing tissue NAD+ decline. Cell metabolism, 27(5), 1081-1095. PMID29719225PMC5935140doi:10.1016/j.cmet.2018.03.016
Peclat, T. R., Thompson, K. L., Warner, G. M., Chini, C. C., Tarragó, M. G., Mazdeh, D. Z., ... & Chini, E. N. (2022). CD38 inhibitor 78c increases mice lifespan and healthspan in a model of chronological aging. Aging Cell, e13589. PMID35263032doi:10.1111/acel.13589
Mayer, K. A., Budde, K., Halloran, P. F., Doberer, K., Rostaing, L., Eskandary, F., ... & Böhmig, G. A. (2022). Safety, tolerability, and efficacy of monoclonal CD38 antibody felzartamab in late antibody-mediated renal allograft rejection: study protocol for a phase 2 trial. Trials, 23(1), 1-15. PMID35395951PMC8990453doi:10.1186/s13063-022-06198-9
Escande, C., Nin, V., Price, N. L., Capellini, V., Gomes, A. P., Barbosa, M. T., … & Chini, E. N. (2013). Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes, 62(4), 1084—1093. PMID23172919PMC3609577doi:10.2337/db12-1139
Boslett, James; Hemann, Craig; Zhao, Yong Juan; Lee, Hon-Cheung; Zweier, Jay L. Luteolinidin protects the postischemic heart through CD38 inhibition with preservation of NAD(P)(H) (англ.) // J. Pharmacol. Exp. Ther.. — 2017. — Vol. 361, iss. 1. — P. 99–108. — doi:10.1124/jpet.116.239459. — PMID28108596. — PMC5363772.
Lagu, B., Wu, X., Kulkarni, S., Paul, R., Becherer, J. D., Olson, L., ... & Andrzejewski, S. (2022). Orally Bioavailable Enzymatic Inhibitor of CD38, MK-0159, Protects against Ischemia/Reperfusion Injury in the Murine Heart. Journal of medicinal chemistry, 65(13), 9418-9446. PMID35762533doi:10.1021/acs.jmedchem.2c00688
Chen, P. M., Katsuyama, E., Satyam, A., Li, H., Rubio, J., Jung, S., ... & Tsokos, G. C. (2022). CD38 reduces mitochondrial fitness and cytotoxic T cell response against viral infection in lupus patients by suppressing mitophagy. Science Advances, 8(24), eabo4271. PMID35704572PMC9200274doi:10.1126/sciadv.abo4271
Ugamraj, H. S., Dang, K., Ouisse, L. H., Buelow, B., Chini, E. N., Castello, G., ... & Dalvi, P. (2022, December). TNB-738, a biparatopic antibody, boosts intracellular NAD+ by inhibiting CD38 ecto-enzyme activity. mAbs, 14(1), 2095949. Taylor & Francis. PMID35867844PMC9311320doi:10.1080/19420862.2022.2095949
pubmed.ncbi.nlm.nih.gov
Blacher E, Ben Baruch B, Levy A, Geva N, Green KD, Garneau-Tsodikova S, et al. (Март 2015). Inhibition of glioma progression by a newly discovered CD38 inhibitor. International Journal of Cancer. 136 (6): 1422—33. doi:10.1002/ijc.29095. PMID25053177.
Kellenberger E, Kuhn I, Schuber F, Muller-Steffner H (Июль 2011). Flavonoids as inhibitors of human CD38. Bioorganic & Medicinal Chemistry Letters. 21 (13): 3939—42. doi:10.1016/j.bmcl.2011.05.022. PMID21641214.
Becherer JD, Boros EE, Carpenter TY, Cowan DJ, Deaton DN, Haffner CD, et al. (Сентябрь 2015). Discovery of 4-Amino-8-quinoline Carboxamides as Novel, Submicromolar Inhibitors of NAD-Hydrolyzing Enzyme CD38. Journal of Medicinal Chemistry. 58 (17): 7021—56. doi:10.1021/acs.jmedchem.5b00992. PMID26267483.
Deaton DN, Haffner CD, Henke BR, Jeune MR, Shearer BG, Stewart EL, Stuart JD, Ulrich JC (Май 2018). 2,4-Diamino-8-quinazoline carboxamides as novel, potent inhibitors of the NAD hydrolyzing enzyme CD38: Exploration of the 2-position structure-activity relationships. Bioorganic & Medicinal Chemistry. 26 (8): 2107—2150. doi:10.1016/j.bmc.2018.03.021. PMID29576271.
Sepehri B, Ghavami R (Январь 2019). Design of new CD38 inhibitors based on CoMFA modelling and molecular docking analysis of 4‑amino-8-quinoline carboxamides and 2,4-diamino-8-quinazoline carboxamides. SAR and QSAR in Environmental Research. 30 (1): 21—38. doi:10.1080/1062936X.2018.1545695. PMID30489181. S2CID54158219.
Sepehri B, Ghavami R (Январь 2019). Design of new CD38 inhibitors based on CoMFA modelling and molecular docking analysis of 4‑amino-8-quinoline carboxamides and 2,4-diamino-8-quinazoline carboxamides. SAR and QSAR in Environmental Research. 30 (1): 21—38. doi:10.1080/1062936X.2018.1545695. PMID30489181. S2CID54158219.