te Velthuis, A. J. (2014). Common and unique features of viral RNA-dependent polymerases. Cellular and molecular life sciences, 71(22), 4403-4420. doi:10.1007/s00018-014-1695-zPMC4207942
Venkataraman, S., Prasad, B. V., & Selvarajan, R. (2018). RNA dependent RNA polymerases: insights from structure, function and evolution. Viruses, 10(2), 76. doi:10.3390/v10020076PMC5850383
Horie, M., Kobayashi, Y., Honda, T., Fujino, K., Akasaka, T., Kohl, C., ... & Corman, V. M. (2016). An RNA-dependent RNA polymerase gene in bat genomes derived from an ancient negative-strand RNA virus. Scientific reports, 6, 25873. doi:10.1038/srep25873PMC4865735
Pinzón, N., Bertrand, S., Subirana, L., Busseau, I., Escrivá, H., & Seitz, H. (2019). Functional lability of RNA-dependent RNA polymerases in animals. PLoS genetics, 15(2), e1007915. doi:10.1371/journal.pgen.1007915PMC6396948
Brinton, M. A., & Plemper, R. K. (2019). Editorial overview: Antiviral strategies: Antiviral drug development for single-stranded RNA viruses. doi:10.1016/j.coviro.2019.05.011
Ortega-Prieto AM, Sheldon J, Grande-Pérez A, Tejero H, Gregori J, Quer J, Esteban JI, Domingo E, Perales C (2013). Extinction of hepatitis C virus by ribavirin in hepatoma cells involves lethal mutagenesis. PLoS One. 8 (8): e71039. doi:10.1371/journal.pone.0071039. PMC3745404
Crotty S, Cameron C, Andino R (2002). "Ribavirin's antiviral mechanism of action: lethal mutagenesis?". Journal of Molecular Medicine. 80 (2): 86–95. doi:10.1007/s00109-001-0308-0. PMID1190764
Sidwell RW, Bailey KW, Wong MH, Barnard DL, Smee DF (2005). In vitro and in vivo influenza virus-inhibitory effects of viramidine. Antiviral Research. 68 (1): 10–7. doi:10.1016/j.antiviral.2005.06.003. PMID16087250
Barnard, D. L., Day, C. W., Bailey, K., Heiner, M., Montgomery, R., Lauridsen, L., ... & Carson, D. A. (2006). Enhancement of the infectivity of SARS-CoV in BALB/c mice by IMP dehydrogenase inhibitors, including ribavirin. Antiviral research, 71(1), 53-63. doi:10.1016/j.antiviral.2006.03.001PMID16621037
Sun, Z. G., Zhao, T. T., Lu, N., Yang, Y. A., & Zhu, H. L. (2019). Research Progress of Glycyrrhizic Acid on Antiviral Activity. Mini reviews in medicinal chemistry, 19(10), 826-832. doi:10.2174/1389557519666190119111125PMID30659537
Cinatl, J., Morgenstern, B., Bauer, G., Chandra, P., Rabenau, H., & Doerr, H. W. (2003). Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. The Lancet, 361(9374), 2045-2046. doi:10.1016/s0140-6736(03)13615-xPMID12814717
Hoever, G., Baltina, L., Michaelis, M., Kondratenko, R., Baltina, L., Tolstikov, G. A., ... & Cinatl, J. (2005). Antiviral Activity of Glycyrrhizic Acid Derivatives against SARS− Coronavirus. Journal of medicinal chemistry, 48(4), 1256-1259. doi:10.1021/jm0493008PMID15715493
Pruijssers, A. J., & Denison, M. R. (2019). Nucleoside analogues for the treatment of coronavirus infections. Current opinion in virology, 35, 57-62. doi:10.1016/j.coviro.2019.04.002PMID31125806
Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, et al. (2018). Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. mBio. 9(2). doi:10.1128/mBio.00221-18. PMC5844999.
Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, et al. (2017). Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Science Translational Medicine. 9 (396): eaal3653. doi:10.1126/scitranslmed.aal3653PMC5567817
Selisko, B., Papageorgiou, N., Ferron, F., & Canard, B. (2018). Structural and functional basis of the fidelity of nucleotide selection by flavivirus RNA-dependent RNA polymerases. Viruses, 10(2), 59. doi:10.3390/v10020059PMC5850366
Ju, J., Li, X., Kumar, S., Jockusch, S., Chien, M., Tao, C., ... & Russo, J. J. (2020). Nucleotide Analogues as Inhibitors of SARS-CoV Polymerase. bioRxiv. https://doi.org/10.1101/2020.03.12.989186
Leyssen, P., De Clercq, E., & Neyts, J. (2008). Molecular strategies to inhibit the replication of RNA viruses. Antiviral research, 78(1), 9-25. https://doi.org/10.1016/j.antiviral.2008.01.004
nih.gov
ncbi.nlm.nih.gov
te Velthuis, A. J. (2014). Common and unique features of viral RNA-dependent polymerases. Cellular and molecular life sciences, 71(22), 4403-4420. doi:10.1007/s00018-014-1695-zPMC4207942
Venkataraman, S., Prasad, B. V., & Selvarajan, R. (2018). RNA dependent RNA polymerases: insights from structure, function and evolution. Viruses, 10(2), 76. doi:10.3390/v10020076PMC5850383
Horie, M., Kobayashi, Y., Honda, T., Fujino, K., Akasaka, T., Kohl, C., ... & Corman, V. M. (2016). An RNA-dependent RNA polymerase gene in bat genomes derived from an ancient negative-strand RNA virus. Scientific reports, 6, 25873. doi:10.1038/srep25873PMC4865735
Pinzón, N., Bertrand, S., Subirana, L., Busseau, I., Escrivá, H., & Seitz, H. (2019). Functional lability of RNA-dependent RNA polymerases in animals. PLoS genetics, 15(2), e1007915. doi:10.1371/journal.pgen.1007915PMC6396948
Ortega-Prieto AM, Sheldon J, Grande-Pérez A, Tejero H, Gregori J, Quer J, Esteban JI, Domingo E, Perales C (2013). Extinction of hepatitis C virus by ribavirin in hepatoma cells involves lethal mutagenesis. PLoS One. 8 (8): e71039. doi:10.1371/journal.pone.0071039. PMC3745404
Crotty S, Cameron C, Andino R (2002). "Ribavirin's antiviral mechanism of action: lethal mutagenesis?". Journal of Molecular Medicine. 80 (2): 86–95. doi:10.1007/s00109-001-0308-0. PMID1190764
Sidwell RW, Bailey KW, Wong MH, Barnard DL, Smee DF (2005). In vitro and in vivo influenza virus-inhibitory effects of viramidine. Antiviral Research. 68 (1): 10–7. doi:10.1016/j.antiviral.2005.06.003. PMID16087250
Barnard, D. L., Day, C. W., Bailey, K., Heiner, M., Montgomery, R., Lauridsen, L., ... & Carson, D. A. (2006). Enhancement of the infectivity of SARS-CoV in BALB/c mice by IMP dehydrogenase inhibitors, including ribavirin. Antiviral research, 71(1), 53-63. doi:10.1016/j.antiviral.2006.03.001PMID16621037
Sun, Z. G., Zhao, T. T., Lu, N., Yang, Y. A., & Zhu, H. L. (2019). Research Progress of Glycyrrhizic Acid on Antiviral Activity. Mini reviews in medicinal chemistry, 19(10), 826-832. doi:10.2174/1389557519666190119111125PMID30659537
Cinatl, J., Morgenstern, B., Bauer, G., Chandra, P., Rabenau, H., & Doerr, H. W. (2003). Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. The Lancet, 361(9374), 2045-2046. doi:10.1016/s0140-6736(03)13615-xPMID12814717
Hoever, G., Baltina, L., Michaelis, M., Kondratenko, R., Baltina, L., Tolstikov, G. A., ... & Cinatl, J. (2005). Antiviral Activity of Glycyrrhizic Acid Derivatives against SARS− Coronavirus. Journal of medicinal chemistry, 48(4), 1256-1259. doi:10.1021/jm0493008PMID15715493
Pruijssers, A. J., & Denison, M. R. (2019). Nucleoside analogues for the treatment of coronavirus infections. Current opinion in virology, 35, 57-62. doi:10.1016/j.coviro.2019.04.002PMID31125806
Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, et al. (2018). Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. mBio. 9(2). doi:10.1128/mBio.00221-18. PMC5844999.
Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, et al. (2017). Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Science Translational Medicine. 9 (396): eaal3653. doi:10.1126/scitranslmed.aal3653PMC5567817
Selisko, B., Papageorgiou, N., Ferron, F., & Canard, B. (2018). Structural and functional basis of the fidelity of nucleotide selection by flavivirus RNA-dependent RNA polymerases. Viruses, 10(2), 59. doi:10.3390/v10020059PMC5850366